Integrating Multi-Label Contrastive Learning With Dual Adversarial Graph Neural Networks for Cross-Modal Retrieval

计算机科学 人工智能 判别式 机器学习 特征学习 相似性(几何) 图形 模式识别(心理学) 语义学(计算机科学) 代表(政治) 理论计算机科学 图像(数学) 政治 政治学 法学 程序设计语言
作者
Shengsheng Qian,Dizhan Xue,Quan Fang,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:26
标识
DOI:10.1109/tpami.2022.3188547
摘要

With the growing amount of multimodal data, cross-modal retrieval has attracted more and more attention and become a hot research topic. To date, most of the existing techniques mainly convert multimodal data into a common representation space where similarities in semantics between samples can be easily measured across multiple modalities. However, these approaches may suffer from the following limitations: 1) They overcome the modality gap by introducing loss in the common representation space, which may not be sufficient to eliminate the heterogeneity of various modalities; 2) They treat labels as independent entities and ignore label relationships, which is not conducive to establishing semantic connections across multimodal data; 3) They ignore the non-binary values of label similarity in multi-label scenarios, which may lead to inefficient alignment of representation similarity with label similarity. To tackle these problems, in this article, we propose two models to learn discriminative and modality-invariant representations for cross-modal retrieval. First, the dual generative adversarial networks are built to project multimodal data into a common representation space. Second, to model label relation dependencies and develop inter-dependent classifiers, we employ multi-hop graph neural networks (consisting of Probabilistic GNN and Iterative GNN), where the layer aggregation mechanism is suggested for using propagation information of various hops. Third, we propose a novel soft multi-label contrastive loss for cross-modal retrieval, with the soft positive sampling probability, which can align the representation similarity and the label similarity. Additionally, to adapt to incomplete-modal learning, which can have wider applications, we propose a modal reconstruction mechanism to generate missing features. Extensive experiments on three widely used benchmark datasets, i.e., NUS-WIDE, MIRFlickr, and MS-COCO, show the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王小妖发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
7秒前
8秒前
Ava应助阿娟儿采纳,获得10
9秒前
zzuwxj发布了新的文献求助10
9秒前
Venus发布了新的文献求助10
10秒前
可意完成签到,获得积分20
11秒前
DDDD发布了新的文献求助10
13秒前
13秒前
可意发布了新的文献求助20
14秒前
英姑应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
16秒前
blue完成签到,获得积分10
17秒前
Jasper应助Venus采纳,获得10
17秒前
18秒前
小鱼发布了新的文献求助10
19秒前
blue发布了新的文献求助10
19秒前
汉堡包应助优美一斩采纳,获得10
22秒前
23秒前
24秒前
26秒前
yuanyijie发布了新的文献求助10
27秒前
第八大洋发布了新的文献求助10
32秒前
桃桃不加冰完成签到,获得积分10
36秒前
qiyun96完成签到,获得积分10
37秒前
李健的粉丝团团长应助oreo采纳,获得10
37秒前
CodeCraft应助第八大洋采纳,获得10
37秒前
37秒前
吕佳完成签到 ,获得积分10
38秒前
好学泡泡发布了新的文献求助10
40秒前
44秒前
46秒前
m13965062353完成签到,获得积分10
47秒前
优美一斩发布了新的文献求助10
50秒前
dudu发布了新的文献求助10
52秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325851
关于积分的说明 10224474
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669131
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653