多输入多输出
计算机科学
信道状态信息
架空(工程)
阈值
深度学习
发射机
频道(广播)
人工智能
控制理论(社会学)
电信
无线
操作系统
图像(数学)
控制(管理)
作者
J. Guo,L. Wang,F. Li,J. Xue
出处
期刊:Cornell University - arXiv
日期:2021-12-12
摘要
In order to achieve reliable communication with a high data rate of massive multiple-input multiple-output (MIMO) systems in frequency division duplex (FDD) mode, the estimated channel state information (CSI) at the receiver needs to be fed back to the transmitter. However, the feedback overhead becomes exorbitant with the increasing number of antennas. In this paper, a two stages low rank (TSLR) CSI feedback scheme for millimeter wave (mmWave) massive MIMO systems is proposed to reduce the feedback overhead based on model-driven deep learning. Besides, we design a deep iterative neural network, named FISTA-Net, by unfolding the fast iterative shrinkage thresholding algorithm (FISTA) to achieve more efficient CSI feedback. Moreover, a shrinkage thresholding network (ST-Net) is designed in FISTA-Net based on the attention mechanism, which can choose the threshold adaptively. Simulation results show that the proposed TSLR CSI feedback scheme and FISTA-Net outperform the existing algorithms in various scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI