A Machine Learning Model Based on Tumor and Immune Biomarkers to Predict Undetectable MRD and Survival Outcomes in Multiple Myeloma

多发性骨髓瘤 微小残留病 养生 医学 肿瘤科 无进展生存期 骨髓 内科学 总体生存率
作者
Camilla Guerrero,Noemí Puig,María‐Teresa Cedena,Ibai Goicoechea,Cristina Pérez,Juan‐José Garcés,Cirino Botta,Marı́a José Calasanz,Norma C. Gutiérrez,María-Luisa Martín-Ramos,Albert Oriol,Rafael Ríos,Miguel‐Teodoro Hernández,Rafael Martínez-Martínez,Joan Bargay,Felipe de Arriba,Luis Palomera,Ana Pilar González-Rodríguez,Adrián Mosquera-Orgueira,Marta Sonia González
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:28 (12): 2598-2609 被引量:26
标识
DOI:10.1158/1078-0432.ccr-21-3430
摘要

Abstract Purpose: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. Experimental Design: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. Results: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. Conclusions: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭伟完成签到,获得积分10
2秒前
David发布了新的文献求助10
2秒前
more完成签到,获得积分10
7秒前
David完成签到,获得积分10
11秒前
LonelyCMA完成签到 ,获得积分0
13秒前
隐形白开水完成签到,获得积分10
15秒前
19秒前
一区种子选手完成签到,获得积分10
23秒前
土豆晴完成签到 ,获得积分10
27秒前
lovexz发布了新的文献求助20
27秒前
科研通AI5应助zzy采纳,获得10
32秒前
cdercder应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得20
33秒前
Owen应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得10
33秒前
余味应助科研通管家采纳,获得10
33秒前
zxcharm完成签到,获得积分10
38秒前
39秒前
小白完成签到 ,获得积分10
42秒前
Hello应助娟儿采纳,获得10
44秒前
zzy发布了新的文献求助10
46秒前
47秒前
勤恳的TT完成签到 ,获得积分10
51秒前
lovexz发布了新的文献求助10
54秒前
57秒前
lovexz完成签到,获得积分10
1分钟前
LZX完成签到 ,获得积分10
1分钟前
胡周瑜完成签到 ,获得积分10
1分钟前
852应助LM采纳,获得10
1分钟前
1分钟前
1分钟前
123关注了科研通微信公众号
1分钟前
1分钟前
清爽海白完成签到 ,获得积分10
1分钟前
1分钟前
自觉的万言完成签到 ,获得积分10
1分钟前
娟儿发布了新的文献求助10
1分钟前
磊磊完成签到,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
木木完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329557
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726