光伏
材料科学
分散性
量子点
开路电压
纳米技术
反应性(心理学)
能量转换效率
胶体
配体(生物化学)
相(物质)
蚀刻(微加工)
化学工程
光电子学
光伏系统
电压
化学
高分子化学
有机化学
替代医学
图层(电子)
受体
病理
工程类
物理
生物
医学
量子力学
生物化学
生态学
作者
Jea Woong Jo,Younghoon Kim,Jongmin Choi,F. Pelayo Garcı́a de Arquer,Grant Walters,Bin Sun,Olivier Ouellette,Junghwan Kim,Andrew H. Proppe,Rafael Quintero‐Bermudez,James Z. Fan,Jixian Xu,Chih‐Shan Tan,Oleksandr Voznyy,Edward H. Sargent
标识
DOI:10.1002/adma.201703627
摘要
Abstract The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open‐circuit voltage ( V OC ) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution‐phase ligand exchange that, via judicious incorporation of reactivity‐engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a V OC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI