计算机科学
软件无线电
衰退
偏移量(计算机科学)
人工智能
载波频率偏移
机器学习
无线电频率
航程(航空)
频率偏移
频道(广播)
电信
工程类
正交频分复用
航空航天工程
程序设计语言
作者
Timothy J. O’Shea,Tamoghna Roy,T. Charles Clancy
出处
期刊:IEEE Journal of Selected Topics in Signal Processing
[Institute of Electrical and Electronics Engineers]
日期:2018-01-23
卷期号:12 (1): 168-179
被引量:1391
标识
DOI:10.1109/jstsp.2018.2797022
摘要
We conduct an in depth study on the performance of deep learning based radio\nsignal classification for radio communications signals. We consider a rigorous\nbaseline method using higher order moments and strong boosted gradient tree\nclassification and compare performance between the two approaches across a\nrange of configurations and channel impairments. We consider the effects of\ncarrier frequency offset, symbol rate, and multi-path fading in simulation and\nconduct over-the-air measurement of radio classification performance in the lab\nusing software radios and compare performance and training strategies for both.\nFinally we conclude with a discussion of remaining problems, and design\nconsiderations for using such techniques.\n
科研通智能强力驱动
Strongly Powered by AbleSci AI