PK/PD analysis of a novel pH-dependent antigen-binding antibody using a dynamic antibody–antigen binding model

抗体 抗原 化学 药代动力学 动力学 分子生物学 免疫学 生物 药理学 量子力学 物理
作者
Kenta Haraya,Tatsuhiko Tachibana,Yuki Iwayanagi,Atsuhiko Maeda,Kazuhisa Ozeki,Jun‐ichi Nezu,Masaki Ishigai,Tomoyuki Igawa
出处
期刊:Drug Metabolism and Pharmacokinetics [Elsevier]
卷期号:31 (2): 123-132 被引量:11
标识
DOI:10.1016/j.dmpk.2015.12.007
摘要

Previously, we have reported novel engineered antibody with pH-dependent antigen-binding (recycling antibody), and with both pH-dependent antigen-binding and increased FcRn-binding at neutral pH (sweeping antibody). The purpose of this study is to perform PK/PD predictions to better understand the potential applications of the antibodies as therapeutics. To demonstrate the applicability of recycling and sweeping antibodies over conventional antibodies, PK/PD analyses were performed. PK/PD parameters for antibody and antigen dynamics were estimated from the results of a pharmacokinetic study in human FcRn transgenic mice. A simulation study was performed using the estimated PK/PD parameters with various target antigen profiles. In comparison to conventional antibody, recycling antibody enhanced antibody-antigen complex clearance by 3 folds, while sweeping antibody accelerated antigen clearance by 10 folds in a pharmacokinetic study. Simulation results showed that recycling and sweeping antibodies can improve dosage frequency and reduce the required dose for target antigens with various clearances, plasma concentrations or binding kinetics. Moreover, importance of the association rate constant to enhance the beneficial effect of antibodies was shown. These results support the conclusion that recycling and sweeping antibodies can be applied to various target antigens with different profiles, and expand the number of antigens that antibodies can target.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆豆完成签到,获得积分10
1秒前
shor0414完成签到 ,获得积分0
2秒前
gxzsdf完成签到 ,获得积分10
3秒前
二氧化硒发布了新的文献求助10
3秒前
田様应助zz采纳,获得10
3秒前
zbz完成签到,获得积分10
4秒前
Hezzzz完成签到,获得积分10
5秒前
L1完成签到 ,获得积分10
5秒前
稳重的蛟凤应助Maestro_S采纳,获得10
6秒前
传奇3应助zbz采纳,获得10
7秒前
HXX19完成签到 ,获得积分10
7秒前
好大一只小坏蛋完成签到,获得积分10
7秒前
tsttst完成签到,获得积分10
9秒前
9秒前
二氧化硒完成签到,获得积分10
10秒前
11秒前
LL完成签到 ,获得积分10
14秒前
15秒前
changewoo发布了新的文献求助10
16秒前
晴空万里完成签到 ,获得积分10
17秒前
兴奋尔白完成签到 ,获得积分10
19秒前
张昌炜完成签到 ,获得积分10
19秒前
21秒前
黎黎完成签到 ,获得积分10
23秒前
23秒前
司空元正完成签到 ,获得积分10
24秒前
包容朝雪完成签到 ,获得积分10
25秒前
可绪kk完成签到 ,获得积分10
27秒前
秋半梦发布了新的文献求助10
28秒前
Lucas应助马铃薯采纳,获得10
29秒前
饶喆妍完成签到 ,获得积分10
31秒前
Ashore完成签到,获得积分10
32秒前
热情的觅云完成签到 ,获得积分10
32秒前
laber完成签到,获得积分0
33秒前
sxb10101应助Ideal采纳,获得50
33秒前
ma完成签到,获得积分10
36秒前
princess完成签到,获得积分10
36秒前
十六月夜完成签到,获得积分10
39秒前
39秒前
壮观的谷冬完成签到,获得积分10
39秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5846349
求助须知:如何正确求助?哪些是违规求助? 6213761
关于积分的说明 15617563
捐赠科研通 4962920
什么是DOI,文献DOI怎么找? 2675777
邀请新用户注册赠送积分活动 1620525
关于科研通互助平台的介绍 1576099