协变量
贝叶斯概率
数学
选型
混合模型
正规化(语言学)
参数统计
加性模型
泊松分布
应用数学
不可见的
选择(遗传算法)
随机效应模型
统计
高斯分布
计算机科学
计量经济学
人工智能
医学
荟萃分析
物理
量子力学
内科学
标识
DOI:10.18637/jss.v043.i14
摘要
The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respective covariates, and (3) to estimate their shapes. Selection and regularization of the model terms is based on a novel spike-and-slab-type prior on coefficient groups associated with parametric and semi-parametric effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI