材料科学
聚乙烯吡咯烷酮
薄板电阻
吸附
纳米线
透射率
导电体
柠檬酸
透明导电膜
化学工程
杂质
铜
纳米技术
光电子学
氧化物
复合材料
高分子化学
有机化学
图层(电子)
冶金
化学
工程类
作者
S. Yokoyama,H. Kimura,Hiroki Oikawa,Kenichi Motomiya,Balachandran Jeyadevan,Hideyuki Takahashi
标识
DOI:10.1016/j.colsurfa.2019.123939
摘要
Copper nanowires (Cu NWs) are promising materials for fabricating low-cost, flexible, transparent, and conductive films. However, their synthesis typically requires capping agents and their surfaces are easily oxidized, hindering NW performance. In this study, the surfaces of polyvinylpyrrolidone (PVP)-stabilized Cu NWs were treated with hydroxy acids to create impurity-free Cu junctions between the NWs. The PVP on the NW surfaces was removed in hydroxy acid solutions under neutral conditions, followed by surface oxidation. The oxides were more stable than the adsorbed PVP; therefore, this treatment completely converted PVP-stabilized surfaces into oxide-covered surfaces. The oxides were then eliminated and their surfaces were stabilized by hydroxy acids under acidic conditions. Among the tested acids, citric acid completely removed the surface oxides and best protected the NW surfaces, resulting in oxide-free Cu NWs. This treatment was then applied in combination with vacuum filtration to fabricate transparent conductive films comprised of Cu NWs. The surface treatment substantially improved the sheet resistance and transmittance of the film from 583.3 Ω/sq and 84% (at 550 nm) to 81.7 Ω/sq and 86%, respectively. The simple treatment process developed herein is expected to be widely applied to improve Cu NW performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI