Displacement Measurement Based on Data Fusion and Real-Time Computing

加速度计 流离失所(心理学) 加速度 悬臂梁 可靠性(半导体) 传感器融合 旋转(数学) 噪音(视频) 结构工程 卡尔曼滤波器 梁(结构) 工程类 过程(计算) 计算机科学 功率(物理) 人工智能 物理 图像(数学) 操作系统 量子力学 心理治疗师 经典力学 心理学
作者
Kun Zeng,Hai Huang,Shubin Song
出处
期刊:Journal of Performance of Constructed Facilities [American Society of Civil Engineers]
卷期号:34 (6) 被引量:8
标识
DOI:10.1061/(asce)cf.1943-5509.0001512
摘要

Displacement due to the deformation of civil structures such as bridges and buildings (caused by different external loads: e.g., vehicle, wind, and temperature) is an important factor for structure safety evaluation. The effectiveness of structure maintenance is highly dependent on the accuracy and reliability of the structural displacement measurement. An accelerometer is a tool that indirectly measures displacement and has gained widespread interest. However, the accuracy is questionable because noise exists in acceleration measurements and also can be undermined by accumulated errors during the double integration of the acceleration process. In this paper, a new displacement measurement algorithm based on data fusion technique was studied. In this algorithm, the Kalman filter was used as the fusion technique. The acceleration was taken as the primary measurement, and rotation measurement was used as the second measurement to minimize the effect of the error in the displacement prediction during the double integration of the acceleration process. To validate the performance and reliability of the algorithm, two lab tests were conducted: cantilever beam test and simply supported beam test. The results show that the proposed algorithm could minimize the effect of the accumulated error on the double integration of acceleration, thus providing a reliable estimation of the vertical displacement of a cantilever beam and simply supported beam.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助公司账号2采纳,获得10
刚刚
我是老大应助公司账号2采纳,获得10
刚刚
酷波er应助公司账号2采纳,获得10
刚刚
香蕉觅云应助公司账号2采纳,获得10
刚刚
成亚娜应助公司账号2采纳,获得10
刚刚
斯文败类应助公司账号2采纳,获得10
刚刚
刚刚
刚刚
火星上幻露完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
2秒前
女明星完成签到,获得积分10
2秒前
pluto应助杨佳酿采纳,获得10
2秒前
端庄剑成完成签到,获得积分10
3秒前
也许,发布了新的文献求助10
3秒前
zlx发布了新的文献求助10
3秒前
11发布了新的文献求助30
4秒前
hope完成签到,获得积分10
5秒前
Sunny完成签到,获得积分10
5秒前
pei009完成签到,获得积分10
5秒前
YKX发布了新的文献求助10
6秒前
雨田发布了新的文献求助10
6秒前
Cc完成签到 ,获得积分10
7秒前
Owen应助自觉的涵易采纳,获得10
7秒前
浮游应助柚柚又采纳,获得10
7秒前
彭于晏应助Steven采纳,获得10
8秒前
东方元语应助呆萌的源智采纳,获得20
8秒前
英俊的铭应助世隐采纳,获得10
9秒前
自信的鞋垫完成签到,获得积分10
9秒前
momo发布了新的文献求助10
9秒前
万能图书馆应助萧萧乐采纳,获得10
9秒前
脑洞疼应助晴天采纳,获得10
9秒前
zhubin完成签到 ,获得积分10
9秒前
tufei完成签到,获得积分10
10秒前
11秒前
ifhaceoiv发布了新的文献求助30
12秒前
风中的静曼完成签到 ,获得积分20
12秒前
12秒前
今后应助kim采纳,获得10
12秒前
木头完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473830
求助须知:如何正确求助?哪些是违规求助? 4575894
关于积分的说明 14355235
捐赠科研通 4503558
什么是DOI,文献DOI怎么找? 2467664
邀请新用户注册赠送积分活动 1455473
关于科研通互助平台的介绍 1429531