The role of relationship scope in sustaining relational contracts in interfirm networks

范围(计算机科学) 业务 杠杆(统计) 普通合伙企业 产业组织 价值(数学) 范围经济 关系契约 关系视图 营销 知识管理 微观经济学 经济 计算机科学 财务 机器学习 规模经济 程序设计语言
作者
Nicholas Argyres,Janet Bercovitz,Giorgio Zanarone
出处
期刊:Strategic Management Journal [Wiley]
卷期号:41 (2): 222-245 被引量:42
标识
DOI:10.1002/smj.3095
摘要

Abstract Research summary A key strategic decision for many firms is the scope of their relationships with partners. Existing theories of relationship scope are limited in that they disregard the facts that: (a) most firms transact within networks of multiple partners, and (b) these partnerships often involve two‐sided moral hazard. We develop a theory of partnership scope in interfirm networks that addresses these deficiencies. We show how, by broadening the scope of business it conducts with its partners, a firm can reduce externalities between them, and thereby sustain self‐enforcing exchange relationships (“relational contracts”) in which both parties cooperate with each other repeatedly and maximize the value created. We discuss numerous settings in which our model applies, including franchising, supply chains, and platform‐based ecosystems. Managerial summary A key strategic decision for many firms is the number of transactions or activities they conduct with a given supplier, business customer, or company that sells complementary products or services. We offer a theory to explain why firms often prefer relationships with broader scope. Whereas other theories are based on the ability to leverage partner knowledge or cheaper supervision, our theory is based on the concept of a “relational contract”, in which a firm and its partner cooperate with each other repeatedly according to an informal agreement between them. We show that under relational contracting, broader scope relationships encourage better mutual cooperation than narrow scope relationships, thereby maximizing the value created by them. We discuss how our model applies to franchising, supply chains, and platform‐based ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CTtoF发布了新的文献求助10
1秒前
1秒前
ZY关闭了ZY文献求助
1秒前
慕辰完成签到,获得积分10
1秒前
4秒前
xuezha发布了新的文献求助10
4秒前
小卡拉米发布了新的文献求助10
6秒前
7秒前
DL完成签到 ,获得积分10
7秒前
jekyll发布了新的文献求助10
7秒前
科研通AI5应助hyy采纳,获得10
7秒前
7秒前
shanshan发布了新的文献求助30
8秒前
nbing发布了新的文献求助10
9秒前
科研小狗完成签到 ,获得积分10
11秒前
12秒前
春山关注了科研通微信公众号
13秒前
英俊的铭应助天韧采纳,获得10
13秒前
张祖伦发布了新的文献求助10
14秒前
14秒前
CWNU_HAN应助热情的天晴采纳,获得30
14秒前
赘婿应助桂桂阿云采纳,获得10
15秒前
善学以致用应助jekyll采纳,获得10
17秒前
科研通AI5应助小卡拉米采纳,获得10
18秒前
深情安青应助Evaporate采纳,获得10
19秒前
zzr元亨利贞完成签到,获得积分10
20秒前
20秒前
852应助Angie采纳,获得10
20秒前
dery完成签到,获得积分10
20秒前
22秒前
22秒前
NexusExplorer应助JIANG采纳,获得10
22秒前
23秒前
258完成签到,获得积分10
23秒前
23秒前
哲999完成签到,获得积分10
23秒前
扶桑发布了新的文献求助10
23秒前
小白给Dasiy的求助进行了留言
25秒前
高凯璇发布了新的文献求助10
25秒前
眯眯眼的黎昕完成签到 ,获得积分10
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Spatio-Temporal Stock Prediction Method Based on End-to-End Learning with Attention Mechanism 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836233
求助须知:如何正确求助?哪些是违规求助? 3378583
关于积分的说明 10504968
捐赠科研通 3098204
什么是DOI,文献DOI怎么找? 1706318
邀请新用户注册赠送积分活动 820958
科研通“疑难数据库(出版商)”最低求助积分说明 772349