Learning for predictions: real-time reliability assessment of aerospace systems

预言 可靠性(半导体) 航空航天 可靠性工程 断层(地质) 计算机科学 估计员 状态监测 健康管理体系 工程类 实时计算 功率(物理) 替代医学 数学 量子力学 医学 地震学 统计 航空航天工程 病理 地质学 物理 电气工程
作者
Pier Carlo Berri,Matteo D. Dalla Vedova,Laura Mainini
出处
期刊:AIAA Scitech 2021 Forum 被引量:4
标识
DOI:10.2514/6.2021-1478
摘要

View Video Presentation: https://doi.org/10.2514/6.2021-1478.vid Prognostics and Health Management (PHM) aim to predict the Remaining Useful Life (RUL) of a system and to allow a timely planning of replacement of components, limiting the need for corrective maintenance and the down time of equipment. A major challenge in system prognostics is the availability of accurate physics based representations of the grow rate of faults. Additionally, the analysis of data acquired during flight operations is traditionally time consuming and expensive. This work proposes a computational method to overcome these limitations through the dynamic adaptation of the state-space model of fault propagation to on-board observations of system's health. Our approach aims at enabling real-time assessment of systems health and reliability through fast predictions of the Remaining Useful Life that account for uncertainty. The strategy combines physics-based knowledge of the system damage propagation rate, machine learning and real-time measurements of the health status to obtain an accurate estimate of the RUL of aerospace systems. The RUL prediction algorithm relies on a dynamical estimator filter, which allows to deal with nonlinear systems affected by uncertainties with unknown distribution. The proposed method integrates a dynamical model of the fault propagation, accounting for the current and past measured health conditions, the past time history of the operating conditions (such as input command, load, temperature, etc.), and the expected future operating conditions. The model leverages the knowledge collected through the record of past fault measurements, and dynamically adapts the prediction of the damage propagation by learning from the observed time history. The original method is demonstrated for the RUL prediction of an electromechanical actuator for aircraft flight controls. We observe that the strategy allows to refine rapid predictions of the RUL in fractions of seconds by progressively learning from on-board acquisitions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助魏笑白采纳,获得30
1秒前
yuanke666完成签到,获得积分10
1秒前
sarah完成签到,获得积分10
1秒前
英勇雪珊发布了新的文献求助10
1秒前
争气完成签到,获得积分10
3秒前
VvV完成签到,获得积分10
3秒前
止戈为武完成签到,获得积分10
3秒前
Welcome发布了新的文献求助10
3秒前
欣慰元蝶应助Jasmine采纳,获得10
4秒前
猜猜猜完成签到 ,获得积分10
4秒前
张张发布了新的文献求助20
4秒前
4秒前
花川完成签到 ,获得积分10
5秒前
大龙哥886应助梧桐采纳,获得10
5秒前
5秒前
6秒前
虚幻白桃完成签到,获得积分10
6秒前
yami发布了新的文献求助10
7秒前
7秒前
socras完成签到 ,获得积分10
8秒前
8秒前
彬子完成签到,获得积分10
9秒前
zz发布了新的文献求助10
9秒前
美缝羊关注了科研通微信公众号
9秒前
尹梦成完成签到,获得积分10
10秒前
盘尼西林发布了新的文献求助10
10秒前
10秒前
新羽发布了新的文献求助10
11秒前
宇文追命发布了新的文献求助10
11秒前
巧克力饼完成签到,获得积分10
12秒前
12秒前
ding应助巴啦啦采纳,获得10
13秒前
小毛毛发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
Migrol完成签到,获得积分10
14秒前
15秒前
四羟基合铝酸钾完成签到,获得积分10
15秒前
15秒前
daypoi完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544986
求助须知:如何正确求助?哪些是违规求助? 4630848
关于积分的说明 14618775
捐赠科研通 4572625
什么是DOI,文献DOI怎么找? 2506891
邀请新用户注册赠送积分活动 1483926
关于科研通互助平台的介绍 1455252