Adaptively Learning Facial Expression Representation via C-F Labels and Distillation

人工智能 模式识别(心理学) 计算机科学 面部表情 代表(政治) 表达式(计算机科学) 面部表情识别 语音识别 计算机视觉 面部识别系统 数学 政治 政治学 法学 程序设计语言
作者
Hangyu Li,Nannan Wang,Xinpeng Ding,Xi Yang,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 2016-2028 被引量:135
标识
DOI:10.1109/tip.2021.3049955
摘要

Facial expression recognition is of significant importance in criminal investigation and digital entertainment. Under unconstrained conditions, existing expression datasets are highly class-imbalanced, and the similarity between expressions is high. Previous methods tend to improve the performance of facial expression recognition through deeper or wider network structures, resulting in increased storage and computing costs. In this paper, we propose a new adaptive supervised objective named AdaReg loss, re-weighting category importance coefficients to address this class imbalance and increasing the discrimination power of expression representations. Inspired by human beings' cognitive mode, an innovative coarse-fine (C-F) labels strategy is designed to guide the model from easy to difficult to classify highly similar representations. On this basis, we propose a novel training framework named the emotional education mechanism (EEM) to transfer knowledge, composed of a knowledgeable teacher network (KTN) and a self-taught student network (STSN). Specifically, KTN integrates the outputs of coarse and fine streams, learning expression representations from easy to difficult. Under the supervision of the pre-trained KTN and existing learning experience, STSN can maximize the potential performance and compress the original KTN. Extensive experiments on public benchmarks demonstrate that the proposed method achieves superior performance compared to current state-of-the-art frameworks with 88.07% on RAF-DB, 63.97% on AffectNet and 90.49% on FERPlus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wynne313发布了新的文献求助10
刚刚
溜溜发布了新的文献求助10
1秒前
小魏不学无术完成签到,获得积分10
1秒前
英俊的铭应助niefengyun采纳,获得10
1秒前
2秒前
dddddd发布了新的文献求助10
2秒前
hanzhipad应助爱笑的栀虞采纳,获得10
2秒前
SYLH应助爱笑的栀虞采纳,获得30
2秒前
fy发布了新的文献求助10
3秒前
3秒前
大模型应助务实的绮山采纳,获得10
4秒前
毕光完成签到,获得积分10
4秒前
科研通AI5应助迪迦采纳,获得10
4秒前
甜甜圈发布了新的文献求助10
5秒前
Lucas发布了新的文献求助30
5秒前
564654SDA完成签到,获得积分10
5秒前
5秒前
Aaron完成签到,获得积分10
5秒前
鹂鹂复霖霖完成签到,获得积分10
5秒前
5秒前
小短腿飞行员完成签到,获得积分10
6秒前
月牙发布了新的文献求助10
7秒前
科研通AI2S应助dddddd采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助zoey采纳,获得30
8秒前
mumu发布了新的文献求助10
9秒前
所所应助Theodore采纳,获得10
9秒前
隐形曼青应助杰哥采纳,获得10
10秒前
zhang-leo发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
乔采柳完成签到,获得积分10
11秒前
威武画板完成签到 ,获得积分10
11秒前
Alex应助儒雅的翠琴采纳,获得10
11秒前
Noxliu发布了新的文献求助10
11秒前
郝憨憨发布了新的文献求助100
11秒前
奋斗靖仇完成签到 ,获得积分10
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839492
求助须知:如何正确求助?哪些是违规求助? 3381849
关于积分的说明 10519914
捐赠科研通 3101218
什么是DOI,文献DOI怎么找? 1708005
邀请新用户注册赠送积分活动 822093
科研通“疑难数据库(出版商)”最低求助积分说明 773174