Safety Assurance Concepts for Automated Driving Systems

安全保证 风险分析(工程) 软件部署 计算机科学 任务(项目管理) 稳健性(进化) 钥匙(锁) 过程管理 系统工程 计算机安全 工程类 软件工程 业务 生物化学 化学 基因
作者
Stuart Ballingall,Majid Sarvi,P F Sweatman
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:02 (3): 1528-1537 被引量:14
标识
DOI:10.4271/2020-01-0727
摘要

<div class="section abstract"><div class="htmlview paragraph">Automated driving systems (ADSs) for road vehicles are being developed that can perform the entire dynamic driving task without a human driver in the loop. However, current regulatory frameworks for assuring vehicle safety may restrict the deployment of ADSs that can use machine learning to modify their functionality while in service. A review was undertaken to identify and assess key initiatives and research relevant to the safety assurance of adaptive safety-critical systems that use machine learning, and to highlight assurance concepts that could benefit from further research. The primary objective was to produce findings and recommendations that can inform policy and regulatory reform relating to ADS safety assurance. Due to the almost infinite number and combination of scenarios that an ADS could encounter, the review found much support for concepts that involve the use of simulation data as virtual evidence of safety compliance, with suggestions of a need to assure simulation tools and models. Real-world behavioural competency testing was also commonly proposed, although noting this concept has its limitations. The concept of whole-of-life assurance was identified, supported by various versions of dynamic runtime monitoring, verification and validation. Concerns regarding Artificial Intelligence (AI) robustness were raised, particularly regarding adversarial inputs and unmodelled scenarios that are essentially unknown unknowns. Further, the concept of explainable AI was highlighted as having potential to provide evidence from an ADS that could support safety assurance and regulatory compliance. While each of the identified assurance concepts should be considered when developing ADS safety assurance framework options, it is recommended that further research on each concept should be progressed.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
漂亮素发布了新的文献求助10
1秒前
搜集达人应助可爱的妙海采纳,获得30
2秒前
搜集达人应助梅梅采纳,获得10
5秒前
慕青应助liulium采纳,获得10
5秒前
RWHO发布了新的文献求助10
5秒前
ljh024完成签到,获得积分10
5秒前
Zeroing完成签到,获得积分10
6秒前
清欢完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
罗大大完成签到 ,获得积分10
7秒前
tls完成签到,获得积分10
7秒前
英姑应助害羞的思松采纳,获得10
9秒前
宇帅完成签到,获得积分10
9秒前
wanci应助可耐的碧采纳,获得10
9秒前
无奈的小兔子完成签到,获得积分10
11秒前
11秒前
aa完成签到,获得积分20
12秒前
13秒前
13秒前
Mic应助YY采纳,获得30
14秒前
科研通AI6应助漂亮素采纳,获得10
15秒前
16秒前
yy发布了新的文献求助10
16秒前
打打应助Pepsi采纳,获得10
17秒前
小马甲应助zz采纳,获得10
17秒前
17秒前
18秒前
研友_8K2x2Z完成签到,获得积分10
18秒前
谦让山槐完成签到 ,获得积分10
18秒前
18秒前
18秒前
whisper发布了新的文献求助10
18秒前
jamin发布了新的文献求助10
20秒前
junlin应助非倪若愚采纳,获得10
21秒前
科研人完成签到 ,获得积分10
21秒前
21秒前
m李发布了新的文献求助10
22秒前
22秒前
ljh024发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541464
求助须知:如何正确求助?哪些是违规求助? 4627921
关于积分的说明 14605667
捐赠科研通 4568962
什么是DOI,文献DOI怎么找? 2504866
邀请新用户注册赠送积分活动 1482342
关于科研通互助平台的介绍 1453883