已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Optimized Scanning-Based AFM Fast Imaging Method

光栅扫描 插值(计算机图形学) 扫描探针显微镜 扫描电子显微镜 计算机科学 三维扫描 人工智能 材料科学 光学 图像(数学) 纳米技术 物理
作者
Yinan Wu,Yongchun Fang,Chao Wang,Zhi Fan,Cunhuan Liu
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 535-546 被引量:4
标识
DOI:10.1109/tmech.2020.2969355
摘要

Atomic force microscopy (AFM) generally relies on a raster scanning method to obtain the sample morphology, which limits its scanning speed and application prospect. To solve this issue, this article proposes an optimized scanning-based fast imaging method to improve the scanning speed of the AFM system. More precisely, a class of novel tracking signals is constructed to achieve smooth scanning, for which the effect of the parameters is analyzed to provide a basis for trajectory optimization. The scanning performance of the proposed method is evaluated from such aspects as scanning uniformity, scanning coverage, scanning/imaging time, and imaging quality, wherein the scanning uniformity is analyzed with Hopkins statistic, while the scanning coverage is studied with the logistic regression. Based on these evaluation indexes, the scanning performance is investigated to determine the scanning parameters and generate the optimized trajectory. Moreover, a three-nearest-neighbor interpolation method is proposed to deal with the difficulty involved with nonlinear sampling imaging, which facilitates to reconstruct images with satisfactory quality. Finally, multiple convincing experiments and applications are implemented to further verify the good performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟迟发布了新的文献求助10
2秒前
2秒前
MCC完成签到,获得积分20
3秒前
yourkit完成签到,获得积分10
3秒前
失眠梦柏发布了新的文献求助10
6秒前
科研通AI5应助SHIJIE采纳,获得10
10秒前
11秒前
14秒前
Vera123发布了新的文献求助10
15秒前
LMDD发布了新的文献求助10
16秒前
终抵星空完成签到,获得积分10
20秒前
研友_Fan发布了新的文献求助10
20秒前
24秒前
叮咚jingle发布了新的文献求助20
26秒前
田様应助Ayaya采纳,获得10
26秒前
亲拜托快快上传完成签到 ,获得积分10
26秒前
juile发布了新的文献求助10
28秒前
29秒前
孙燕应助Noob_saibot采纳,获得10
29秒前
30秒前
lowry完成签到,获得积分10
32秒前
憂xqc发布了新的文献求助10
33秒前
wzh发布了新的文献求助10
33秒前
33秒前
34秒前
34秒前
无辜的书琴完成签到,获得积分10
34秒前
36秒前
juile完成签到,获得积分10
36秒前
快去吃蛋糕完成签到 ,获得积分10
37秒前
37秒前
37秒前
37秒前
李爱国应助科研通管家采纳,获得10
37秒前
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
wangrblzu应助憂xqc采纳,获得10
37秒前
孙燕应助憂xqc采纳,获得10
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833541
求助须知:如何正确求助?哪些是违规求助? 3376064
关于积分的说明 10491471
捐赠科研通 3095564
什么是DOI,文献DOI怎么找? 1704474
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771758