亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT

慢性阻塞性肺病 医学 接收机工作特性 肺癌 队列 阻塞性肺病 金标准(测试) 肺癌筛查 放射科 机器学习 内科学 计算机科学
作者
Lisa Tang,Harvey O. Coxson,Stephen Lam,Jonathon Leipsic,Roger Tam,Don D. Sin
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:2 (5): e259-e267 被引量:50
标识
DOI:10.1016/s2589-7500(20)30064-9
摘要

BackgroundChronic obstructive pulmonary disease (COPD) is underdiagnosed in the community. Thoracic CT scans are widely used for diagnostic and screening purposes for lung cancer. In this proof-of-concept study, we aimed to evaluate a software pipeline for the automated detection of COPD, based on deep learning and a dataset of low-dose CTs that were performed for early detection of lung cancer.MethodsWe examined the use of deep residual networks, a type of artificial residual network, for the automated detection of COPD. Three versions of the residual networks were independently trained to perform COPD diagnosis using random subsets of CT scans collected from the PanCan study, which enrolled ex-smokers and current smokers at high risk of lung cancer, and evaluated the networks using three-fold cross-validation experiments. External validation was performed using 2153 CT scans acquired from a separate cohort of individuals with COPD in the ECLIPSE study. Spirometric data were used to define COPD, with stages defined according to the GOLD criteria.FindingsThe best performing networks achieved an area under the receiver operating characteristic curve (AUC) of 0·889 (SD 0·017) in three-fold cross-validation experiments. When the same set of networks was applied to the ECLIPSE cohort without any modifications to the trained models, they achieved an AUC of 0·886 (0·017), a positive predictive value of 0·847 (0·056), and a negative predictive value of 0·755 (0·097), which is a greater performance than the best quantitative CT measure, the percentage of lung volumes of less than or equal to −950 Hounsfield units (AUC 0·742).InterpretationOur proposed approach could identify patients with COPD among ex-smokers and current smokers without a previous diagnosis of COPD, with clinically acceptable performance. The use of deep residual networks on chest CT scans could be an effective case-finding tool for COPD detection and diagnosis, particularly in ex-smokers and current smokers who are being screened for lung cancer.FundingData Science Institute, University of British Columbia; Canadian Institutes of Health Research
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗溏心蛋完成签到 ,获得积分10
2秒前
zqq完成签到,获得积分0
22秒前
24秒前
27秒前
胡静发布了新的文献求助10
33秒前
YYL完成签到 ,获得积分10
40秒前
41秒前
大模型应助微笑的鼠标采纳,获得10
47秒前
科研通AI2S应助胡静采纳,获得10
49秒前
50秒前
czq完成签到 ,获得积分10
51秒前
耍酷蘑菇完成签到,获得积分10
51秒前
52秒前
andrele发布了新的文献求助10
56秒前
浮游应助null采纳,获得10
1分钟前
科研通AI5应助倪妮采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得30
1分钟前
归尘应助科研通管家采纳,获得30
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得30
1分钟前
1分钟前
qintiantian完成签到,获得积分10
1分钟前
科研通AI5应助qintiantian采纳,获得10
1分钟前
1分钟前
烟花应助人间理想采纳,获得10
1分钟前
灰灰发布了新的文献求助20
1分钟前
hanawang完成签到,获得积分10
1分钟前
1分钟前
2分钟前
1234发布了新的文献求助10
2分钟前
婕哥完成签到,获得积分10
2分钟前
1234完成签到,获得积分10
2分钟前
科研通AI2S应助婕哥采纳,获得30
2分钟前
可靠的一手完成签到 ,获得积分10
2分钟前
斯文败类应助六水居士采纳,获得10
2分钟前
Milton_z完成签到 ,获得积分0
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5116128
求助须知:如何正确求助?哪些是违规求助? 4322855
关于积分的说明 13469621
捐赠科研通 4155027
什么是DOI,文献DOI怎么找? 2276942
邀请新用户注册赠送积分活动 1278832
关于科研通互助平台的介绍 1216821