Deep Learning With 3D Convolutional Neural Network for Noninvasive Prediction of Microvascular Invasion in Hepatocellular Carcinoma

肝细胞癌 卷积神经网络 计算机科学 深度学习 人工智能 人工神经网络 癌症研究 医学
作者
Yongxin Zhang,Xiaofei Lv,Jiliang Qiu,Bin Zhang,Lu Zhang,Fang Jin,Minmin Li,Luyan Chen,Fei Wang,Shuyi Liu,Shuixing Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (1): 134-143 被引量:58
标识
DOI:10.1002/jmri.27538
摘要

Background Microvascular invasion (MVI) is a critical prognostic factor of hepatocellular carcinoma (HCC). However, it could only be obtained by postoperative histological examination. Purpose To develop an end‐to‐end deep‐learning models based on MRI images for preoperative prediction of MVI in HCC patients who underwent surgical resection. Study type Retrospective. Population Two hundred and thirty‐seven patients with histologically confirmed HCC. Field strength 1.5 T and 3.0 T. Sequence Axial T 2 ‐weighted (T 2 ‐w) with turbo spin echo sequence, T 2 ‐Spectral Presaturation with Inversion Recovery (T 2 ‐SPIR), and dynamic contrast‐enhanced (DCE) imaging with fat suppressed enhanced T 1 high‐resolution isotropic volume examination. Assessment The patients were randomly divided into training ( N = 158) and validation ( N = 79) sets. Data augmentation by random rotation was performed on the training set and the sample size increased to 1940 for each MR sequence. A three‐dimensional convolutional neural network (3D CNN) was used to develop four deep‐learning models, including three single‐layer models based on single‐sequence, and fusion model combining three sequences. MVI status was obtained from the postoperative pathology reports. Statistical Tests The dice similarity coefficient (DSC) and Hausdorff distance (HD) were applied to assess the similarity and reproducibility between the manual segmentations of tumor from two radiologists. Receiver operating characteristic curve analysis was used to evaluate model performance. MVI was identified in 92 (38.8%) patients. Good reproducibility with interobserver DSCs of 0.90, 0.89, and 0.89 and HDs of 4.09, 3.67, and 3.60 was observed for PVP, T 2 WI, and T 2 ‐SPIR, respectively. The fusion model achieved an area under the curve (AUC) of 0.81, sensitivity of 69%, and specificity of 79% in the training set and 0.72, sensitivity of 55%, and specificity of 81% in the validation set. Data Conclusion 3D CNN model may serve as a noninvasive tool to predict MVI in HCC, whereas its accuracy needs to be enhanced with larger cohort. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎的哈密瓜完成签到 ,获得积分10
1秒前
2秒前
取法乎上完成签到 ,获得积分10
3秒前
小熊同学发布了新的文献求助10
7秒前
科研通AI5应助wangayting采纳,获得30
7秒前
张平一完成签到 ,获得积分10
7秒前
8秒前
春鸮鸟完成签到 ,获得积分10
8秒前
gy完成签到 ,获得积分10
10秒前
缥缈的青旋完成签到,获得积分10
11秒前
曾经谷云发布了新的文献求助10
13秒前
沉静的绮波完成签到 ,获得积分10
14秒前
LHP完成签到,获得积分10
14秒前
Neko完成签到,获得积分10
15秒前
科研通AI5应助Freya采纳,获得10
17秒前
17秒前
研友_LB1rk8完成签到,获得积分10
18秒前
布蓝图完成签到 ,获得积分10
20秒前
OKC完成签到,获得积分10
22秒前
wangayting发布了新的文献求助30
22秒前
NexusExplorer应助JiegeSCI采纳,获得10
25秒前
25秒前
1117完成签到 ,获得积分10
26秒前
27秒前
w32完成签到,获得积分10
31秒前
32秒前
啊怪完成签到 ,获得积分10
33秒前
36秒前
明眸完成签到 ,获得积分10
36秒前
6633发布了新的文献求助10
37秒前
ATYS完成签到,获得积分10
39秒前
40秒前
jenningseastera应助阿枫采纳,获得30
42秒前
张牧之完成签到 ,获得积分10
43秒前
panpan完成签到 ,获得积分10
46秒前
苦行僧发布了新的文献求助50
47秒前
布可完成签到,获得积分10
48秒前
ES完成签到 ,获得积分0
51秒前
Bryce完成签到 ,获得积分10
52秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751