Automatic Eyeblink Artifact Removal From EEG Signal Using Wavelet Transform With Heuristically Optimized Threshold

阈值 人工智能 计算机科学 小波 离散小波变换 脑电图 模式识别(心理学) 粒子群优化 工件(错误) 算法 语音识别 计算机视觉 小波变换 图像(数学) 心理学 精神科
作者
Souvik Phadikar,Nidul Sinha,Rajdeep Ghosh
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 475-484 被引量:91
标识
DOI:10.1109/jbhi.2020.2995235
摘要

This paper proposes an automatic eyeblink artifacts removal method from corrupted-EEG signals using discrete wavelet transform (DWT) and meta-heuristically optimized threshold. The novel idea of thresholding approximation-coefficients (ACs) instead of detail-coefficients (DCs) of DWT of EEG in a backward manner is proposed for the first time for the removal of eyeblink artifacts. EEG is very sensitive and easily gets affected by eyeblink artifacts. First, the eyeblink corrupted EEG signals are identified using support vector machine (SVM) as a classifier. Then the corrupted EEG signal is decomposed using DWT up to the sixth level. Both the mother wavelet and the level of decomposition are selected using appropriate techniques. Then the ACs are thresholded in backward manner using the optimum threshold values followed by inverse DWT operation to reconstruct the original EEG signal. The AC at level 6 is thresholded and is used in IDWT with DC to get back the AC at level 5. Likewise, the backward thresholding of the ACs followed by IDWT is continued till the artifact free EEG signal is reconstructed at level 1. The optimum values of the thresholds of the ACs at different levels are optimized using two meta-heuristic algorithms, particle swarm optimization (PSO) and grey wolf optimization (GWO) for comparison. The results reveal that the proposed methodology is superior to the recently reported methods in terms of average correlation coefficient (CC) which states that the proposed method is better in terms of the quality of reconstruction in addition to being fully automatic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ljl采纳,获得10
刚刚
1秒前
yy完成签到,获得积分10
1秒前
qwe发布了新的文献求助10
1秒前
小甲发布了新的文献求助10
1秒前
Hmbb完成签到,获得积分10
2秒前
2秒前
2秒前
英姑应助罗怡昕采纳,获得10
3秒前
vivy发布了新的文献求助10
3秒前
4秒前
4秒前
zyy完成签到,获得积分10
6秒前
无语的EP管完成签到,获得积分10
8秒前
小乐发布了新的文献求助10
8秒前
糊涂的元珊完成签到 ,获得积分0
10秒前
大个应助尼亚吉拉采纳,获得20
11秒前
发光且犯二完成签到,获得积分10
12秒前
科研通AI6应助liu采纳,获得10
12秒前
干净的芮完成签到,获得积分10
12秒前
李国铭发布了新的文献求助10
13秒前
13秒前
传奇3应助噼里啪啦采纳,获得10
14秒前
14秒前
Moly关注了科研通微信公众号
14秒前
李爱国应助HHHAN采纳,获得10
16秒前
wangbq发布了新的文献求助10
16秒前
17秒前
温婉的夜山完成签到,获得积分10
17秒前
小旭不会飞完成签到,获得积分10
18秒前
18秒前
阿伟发布了新的文献求助10
20秒前
BareBear应助军军问问张采纳,获得10
21秒前
小马甲应助军军问问张采纳,获得10
21秒前
lilian发布了新的文献求助10
22秒前
在水一方应助ZhaoW采纳,获得10
22秒前
forest完成签到,获得积分10
22秒前
Bob完成签到,获得积分10
22秒前
rose完成签到,获得积分10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478271
求助须知:如何正确求助?哪些是违规求助? 4579994
关于积分的说明 14371755
捐赠科研通 4508300
什么是DOI,文献DOI怎么找? 2470593
邀请新用户注册赠送积分活动 1457382
关于科研通互助平台的介绍 1431307