A comprehensive review on convolutional neural network in machine fault diagnosis

计算机科学 卷积神经网络 领域(数学) 过程(计算) 人工智能 机器学习 断层(地质) 数据科学 特征(语言学) 人工神经网络 地质学 哲学 操作系统 地震学 纯数学 语言学 数学
作者
Jinyang Jiao,Ming Zhao,Jing Lin,Kaixuan Liang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:417: 36-63 被引量:407
标识
DOI:10.1016/j.neucom.2020.07.088
摘要

With the rapid development of manufacturing industry, machine fault diagnosis has become increasingly significant to ensure safe equipment operation and production. Consequently, multifarious approaches have been explored and developed in the past years, of which intelligent algorithms develop particularly rapidly. Convolutional neural network (CNN), as a typical representative of intelligent diagnostic models, has been extensively studied and applied in recent five years, and a large amount of literature has been published in academic journals and conference proceedings. However, there has not been a systematic review to cover these studies and make a prospect for the further research. To fill in this gap, this work attempts to review and summarize the development of the Convolutional Network based Fault Diagnosis (CNFD) approaches comprehensively. Generally, a typical CNFD framework is composed of the following steps, namely, data collection, model construction, and feature learning and decision making, thus this paper is organized by following this stream. Firstly, data collection process is described, in which several popular datasets are introduced. Then, the fundamental theory from the basic CNN to its variants is elaborated. After that, the applications of CNFD are reviewed in terms of three mainstream directions, i.e. classification, prediction and transfer diagnosis. Finally, conclusions and prospects are presented to point out the characteristics of current development, facing challenges and future trends. Last but not least, it is expected that this work would provide convenience and inspire further exploration for researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼延炳完成签到,获得积分10
1秒前
CodeCraft应助专业美女制造采纳,获得10
3秒前
乐观小之应助bobo采纳,获得10
4秒前
boxi完成签到,获得积分10
4秒前
9秒前
坚定惜梦完成签到,获得积分10
10秒前
凯凯完成签到 ,获得积分10
10秒前
10秒前
10秒前
七七七完成签到,获得积分10
12秒前
无限的隶完成签到,获得积分20
12秒前
13秒前
香蕉觅云应助张昌昌采纳,获得10
13秒前
黑豆也应助元谷雪采纳,获得10
15秒前
华仔应助超超采纳,获得10
15秒前
科目三应助galvin采纳,获得10
15秒前
Wangyingjie5发布了新的文献求助10
16秒前
暖暖发布了新的文献求助20
17秒前
称心的远望完成签到,获得积分10
17秒前
yue88发布了新的文献求助10
18秒前
19秒前
20秒前
今后应助咩咩采纳,获得10
20秒前
22秒前
33ovo发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
stardust完成签到 ,获得积分10
24秒前
25秒前
艺馨完成签到,获得积分10
25秒前
可爱丸子完成签到,获得积分10
26秒前
斌爽3发布了新的文献求助10
27秒前
28秒前
28秒前
miemie发布了新的文献求助10
29秒前
高高完成签到,获得积分20
29秒前
29秒前
Wangyingjie5完成签到,获得积分10
29秒前
可可完成签到 ,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225