A comprehensive review on convolutional neural network in machine fault diagnosis

计算机科学 卷积神经网络 领域(数学) 过程(计算) 人工智能 机器学习 断层(地质) 数据科学 特征(语言学) 人工神经网络 地质学 哲学 操作系统 地震学 纯数学 语言学 数学
作者
Jinyang Jiao,Ming Zhao,Jing Lin,Kaixuan Liang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:417: 36-63 被引量:435
标识
DOI:10.1016/j.neucom.2020.07.088
摘要

With the rapid development of manufacturing industry, machine fault diagnosis has become increasingly significant to ensure safe equipment operation and production. Consequently, multifarious approaches have been explored and developed in the past years, of which intelligent algorithms develop particularly rapidly. Convolutional neural network (CNN), as a typical representative of intelligent diagnostic models, has been extensively studied and applied in recent five years, and a large amount of literature has been published in academic journals and conference proceedings. However, there has not been a systematic review to cover these studies and make a prospect for the further research. To fill in this gap, this work attempts to review and summarize the development of the Convolutional Network based Fault Diagnosis (CNFD) approaches comprehensively. Generally, a typical CNFD framework is composed of the following steps, namely, data collection, model construction, and feature learning and decision making, thus this paper is organized by following this stream. Firstly, data collection process is described, in which several popular datasets are introduced. Then, the fundamental theory from the basic CNN to its variants is elaborated. After that, the applications of CNFD are reviewed in terms of three mainstream directions, i.e. classification, prediction and transfer diagnosis. Finally, conclusions and prospects are presented to point out the characteristics of current development, facing challenges and future trends. Last but not least, it is expected that this work would provide convenience and inspire further exploration for researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syiimo完成签到 ,获得积分10
刚刚
菠萝吹雪完成签到,获得积分10
刚刚
re关注了科研通微信公众号
1秒前
阿升发布了新的文献求助10
1秒前
咚咚完成签到,获得积分10
2秒前
liberty完成签到 ,获得积分10
4秒前
紫紫南南发布了新的文献求助10
4秒前
Hotaru完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
ferritin完成签到 ,获得积分10
7秒前
忧心的笑南完成签到,获得积分10
8秒前
Jasper应助阿升采纳,获得10
8秒前
jenny发布了新的文献求助10
9秒前
10秒前
11秒前
宋二庆完成签到,获得积分10
11秒前
Asuna发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得10
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
13秒前
大个应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得200
13秒前
大模型应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
深情安青应助liu采纳,获得10
14秒前
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
2025alex发布了新的文献求助10
16秒前
17秒前
18秒前
冰洁儿完成签到,获得积分10
19秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247483
求助须知:如何正确求助?哪些是违规求助? 3780532
关于积分的说明 11869680
捐赠科研通 3433803
什么是DOI,文献DOI怎么找? 1884639
邀请新用户注册赠送积分活动 936234
科研通“疑难数据库(出版商)”最低求助积分说明 842130