Purposeful selection of variables in logistic regression

协变量 逻辑回归 计算机科学 混淆 特征选择 选择(遗传算法) 变量(数学) 变量 机器学习 过程(计算) 计量经济学 数据挖掘 统计 数学 程序设计语言 操作系统 数学分析
作者
Zoran Bursac,C. Heath Gauss,D. Keith Williams,David W. Hosmer
出处
期刊:Source Code for Biology and Medicine [Springer Nature]
卷期号:3 (1) 被引量:3294
标识
DOI:10.1186/1751-0473-3-17
摘要

The main problem in many model-building situations is to choose from a large set of covariates those that should be included in the "best" model. A decision to keep a variable in the model might be based on the clinical or statistical significance. There are several variable selection algorithms in existence. Those methods are mechanical and as such carry some limitations. Hosmer and Lemeshow describe a purposeful selection of covariates within which an analyst makes a variable selection decision at each step of the modeling process. In this paper we introduce an algorithm which automates that process. We conduct a simulation study to compare the performance of this algorithm with three well documented variable selection procedures in SAS PROC LOGISTIC: FORWARD, BACKWARD, and STEPWISE. We show that the advantage of this approach is when the analyst is interested in risk factor modeling and not just prediction. In addition to significant covariates, this variable selection procedure has the capability of retaining important confounding variables, resulting potentially in a slightly richer model. Application of the macro is further illustrated with the Hosmer and Lemeshow Worchester Heart Attack Study (WHAS) data. If an analyst is in need of an algorithm that will help guide the retention of significant covariates as well as confounding ones they should consider this macro as an alternative tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo完成签到 ,获得积分10
刚刚
柔弱舞蹈完成签到,获得积分10
刚刚
不够萌发布了新的文献求助10
刚刚
1秒前
酷波er应助jsjjs采纳,获得10
1秒前
Akim应助橙子采纳,获得10
1秒前
bkagyin应助刘涵采纳,获得10
1秒前
1秒前
小蘑菇应助mm采纳,获得10
1秒前
1秒前
may完成签到,获得积分20
1秒前
小枝完成签到,获得积分10
2秒前
3秒前
3秒前
zdx发布了新的文献求助10
3秒前
自信的鹭洋完成签到,获得积分10
3秒前
科研通AI6应助小罗采纳,获得10
3秒前
果果完成签到,获得积分10
4秒前
5秒前
诚朴勤仁发布了新的文献求助10
5秒前
舒语珞完成签到,获得积分10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
YH完成签到,获得积分10
5秒前
wu关闭了wu文献求助
5秒前
buhuidanhuixue完成签到,获得积分10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
lllll完成签到,获得积分10
6秒前
6秒前
DB应助科研通管家采纳,获得50
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874