材料科学
记忆电阻器
无定形固体
钙钛矿(结构)
电阻随机存取存储器
神经形态工程学
纳米压痕
纳米尺度
光电子学
纳米技术
氧化物
非易失性存储器
薄膜
电子工程
电气工程
复合材料
电压
计算机科学
化学工程
化学
有机化学
机器学习
人工神经网络
工程类
冶金
作者
Hussein Nili,Sumeet Walia,Sivacarendran Balendhran,Dmitri B. Strukov,Madhu Bhaskaran,Sharath Sriram
标识
DOI:10.1002/adfm.201401278
摘要
Memristive devices are the precursors to high density nanoscale memories and the building blocks for neuromorphic computing. In this work, a unique room temperature synthesized perovskite oxide (amorphous SrTiO 3 : a‐ STO) thin film platform with engineered oxygen deficiencies is shown to realize high performance and scalable metal‐oxide‐metal (MIM) memristive arrays demonstrating excellent uniformity of the key resistive switching parameters. a‐ STO memristors exhibit nonvolatile bipolar resistive switching with significantly high (10 3 –10 4 ) switching ratios, good endurance (>10 6 I–V sweep cycles), and retention with less than 1% change in resistance over repeated 10 5 s long READ cycles. Nano‐contact studies utilizing in situ electrical nanoindentation technique reveal nanoionics driven switching processes that rely on isolatedly controllable nano‐switches uniformly distributed over the device area. Furthermore, in situ electrical nanoindentation studies on ultrathin a‐ STO/metal stacks highlight the impact of mechanical stress on the modulation of non‐linear ionic transport mechanisms in perovskite oxides while confirming the ultimate scalability of these devices. These results highlight the promise of amorphous perovskite memristors for high performance CMOS/CMOL compatible memristive systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI