亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiobjective Optimization of Inline Mobile and Fixed Wireless Sensor Networks under Conditions of Demand Uncertainty

计算机科学 样品(材料) 无线传感器网络 遗传算法 环境科学 水质 实时计算 污染 供水 环境工程 计算机网络 生态学 色谱法 生物 机器学习 化学
作者
Nathan Sankary,Avi Ostfeld
出处
期刊:Journal of Water Resources Planning and Management [American Society of Civil Engineers]
卷期号:144 (8) 被引量:19
标识
DOI:10.1061/(asce)wr.1943-5452.0000930
摘要

Using a system to promptly detect anomalous water quality levels in a water distribution system (WDS) is a critical task to ensure security of a public water supply. Using continuous monitoring stations placed at strategic locations throughout a WDS has shown to be an effective method to detect potential contamination or low water quality; however, the performance of these monitoring stations is highly sensitive to the specific locations at which they are placed throughout the network. As a result, a large amount of research has explored how to determine the locations at which to place monitoring stations in a WDS, which may be composed of tens of thousands of junctions and pipes. These studies have typically used explicit simulations of network hydraulics, and contamination events imposed on a water distribution system, to compare how effectively a network of monitoring stations detects simulated contamination events. Building off these previous studies, the work herein proposes a framework to place fixed monitoring stations and input inline mobile sensors to best detect contamination events under uncertain water quality conditions. An adaptive-noisy-multiobjective-messy genetic algorithm is used to efficiently determine the locations at which to place monitoring stations in two sample water distribution systems for minimum cost. Results show that monitoring stations and sensor networks designed within a demand uncertain framework outperform the solutions designed in a deterministic demand framework when evaluated under more realistic demand uncertain conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
47秒前
顾子墨发布了新的文献求助10
52秒前
53秒前
55秒前
mingjiang发布了新的文献求助10
58秒前
1分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
丘比特应助谦让的西装采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
赘婿应助谦让的西装采纳,获得10
3分钟前
满意的伊完成签到,获得积分10
3分钟前
3分钟前
wannna发布了新的文献求助10
3分钟前
wannna完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
5分钟前
John完成签到,获得积分10
5分钟前
MchemG应助John采纳,获得30
6分钟前
寒冷的如之完成签到 ,获得积分10
6分钟前
云朵完成签到 ,获得积分10
6分钟前
冬去春来完成签到 ,获得积分10
6分钟前
zz发布了新的文献求助10
6分钟前
沐熙发布了新的文献求助10
7分钟前
emchavezangel完成签到,获得积分10
7分钟前
SYLH应助emchavezangel采纳,获得10
7分钟前
香蕉觅云应助洒脱鲲采纳,获得10
7分钟前
Ocean完成签到,获得积分10
7分钟前
沐熙发布了新的文献求助10
7分钟前
高兴凝安完成签到 ,获得积分10
7分钟前
liuliu0801完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
沐熙完成签到,获得积分10
8分钟前
8分钟前
沐熙发布了新的文献求助10
8分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376278
关于积分的说明 10492556
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704722
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842