Learning From Worked Examples, Erroneous Examples, and Problem Solving: Toward Adaptive Selection of Learning Activities

计算机科学 人工智能 调试 序列学习 智能教学系统 机器学习 序列(生物学) 主动学习 适应性学习 多任务学习 机器人学习 任务(项目管理) 遗传学 移动机器人 机器人 生物 程序设计语言 管理 经济
作者
Xingliang Chen,Antonija Mitrović,Moffat Mathews
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:13 (1): 135-149 被引量:26
标识
DOI:10.1109/tlt.2019.2896080
摘要

Problem solving, worked examples, and erroneous examples have proven to be effective learning activities in Intelligent Tutoring Systems (ITSs). However, it is generally unknown how to select learning activities adaptively in ITSs to maximize learning. In the previous work of A. Shareghi Najar and A. Mitrovic, alternating worked examples with problem solving (AEP) was found to be superior to learning only from worked examples or only from problem solving. In our first study, we investigated whether the addition of erroneous examples further improves learning in comparison to AEP. The results indicated that erroneous examples prepared students better for problem solving in comparison to worked examples. Explaining and correcting erroneous examples also led to improved debugging and problem-solving skills. In the second study, we introduced a novel strategy that adaptively decided what learning activity (a worked example, a 1-error erroneous example, a 2-error erroneous example, or a problem to be solved) is appropriate for a student based on his/her performance. We found the adaptive strategy resulted in comparative learning improvement in comparison to the fixed sequence of worked/erroneous examples and problem solving, but with a significantly lower number of learning activities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shelemi发布了新的文献求助10
刚刚
我滴个完成签到,获得积分10
刚刚
虚心醉蝶完成签到 ,获得积分10
1秒前
Benny完成签到,获得积分10
1秒前
犹豫草莓完成签到,获得积分10
1秒前
2秒前
lhy完成签到,获得积分10
2秒前
BadBoy完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
Du完成签到,获得积分10
3秒前
uwasa完成签到,获得积分10
3秒前
4秒前
小不遛w完成签到,获得积分10
4秒前
4秒前
科研通AI6应助G蛋白偶联采纳,获得30
4秒前
沐浴阳光的橙子完成签到,获得积分10
4秒前
ghost发布了新的文献求助10
5秒前
5秒前
温暖的问候完成签到,获得积分10
5秒前
高唐完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
帅哲哲发布了新的文献求助10
6秒前
MZT完成签到,获得积分10
6秒前
6秒前
烟花应助Benny采纳,获得10
6秒前
SUNYAOSUNYAO发布了新的文献求助10
6秒前
醉熏的以蓝完成签到 ,获得积分10
6秒前
6秒前
6秒前
lsq完成签到 ,获得积分10
7秒前
十八完成签到,获得积分10
7秒前
幸福乐蕊完成签到,获得积分10
7秒前
8秒前
hellocat完成签到,获得积分10
8秒前
领导范儿应助小田采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924