清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Shared Embedding Based Neural Networks for Knowledge Graph Completion

计算机科学 嵌入 人工神经网络 知识图 人工智能 关系(数据库) 图形 理论计算机科学 机制(生物学) 机器学习 数据挖掘 认识论 哲学
作者
Saiping Guan,Xiaolong Jin,Yuanzhuo Wang,Xueqi Cheng
标识
DOI:10.1145/3269206.3271704
摘要

Knowledge Graphs (KGs) have facilitated many real-world applications (e.g., vertical search and intelligent question answering). However, they are usually incomplete, which affects the performance of such KG based applications. To alleviate this problem, a number of Knowledge Graph Completion (KGC) methods have been developed to predict those implicit triples. Tensor/matrix based methods and translation based methods have attracted great attention for a long time. Recently, neural network has been introduced into KGC due to its extensive superiority in many fields (e.g., natural language processing and computer vision), and achieves promising results. In this paper, we propose a Shared Embedding based Neural Network (SENN) model for KGC. It integrates the prediction tasks of head entities, relations and tail entities into a neural network based framework with shared embeddings of entities and relations, while explicitly considering the differences among these prediction tasks. Moreover, we propose an adaptively weighted loss mechanism, which dynamically adjusts the weights of losses according to the mapping properties of relations, and the prediction tasks. Since relation prediction usually performs better than head and tail entity predictions, we further extend SENN to SENN+ by employing it to assist head and tail entity predictions. Experiments on benchmark datasets validate the effectiveness and merits of the proposed SENN and SENN+ methods. The shared embeddings and the adaptively weighted loss mechanism are also testified to be effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜陌完成签到,获得积分10
1秒前
暮晓见完成签到 ,获得积分10
14秒前
WYK完成签到 ,获得积分10
25秒前
小乙猪完成签到 ,获得积分0
31秒前
zzhui完成签到,获得积分10
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
long完成签到 ,获得积分10
1分钟前
chen完成签到,获得积分10
2分钟前
zz完成签到 ,获得积分10
2分钟前
Glitter完成签到 ,获得积分10
2分钟前
3分钟前
沈惠映完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
毕光发布了新的文献求助10
4分钟前
毕光完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
herococa应助科研通管家采纳,获得10
5分钟前
5分钟前
李健应助平安健康采纳,获得10
5分钟前
6分钟前
平安健康发布了新的文献求助10
6分钟前
平安健康完成签到,获得积分10
6分钟前
6分钟前
Krim完成签到 ,获得积分10
6分钟前
6分钟前
丽丽完成签到,获得积分10
6分钟前
7分钟前
HoHo完成签到 ,获得积分10
7分钟前
低空飞行发布了新的文献求助10
8分钟前
小强完成签到 ,获得积分10
8分钟前
naczx完成签到,获得积分0
8分钟前
研友_RLNzvL完成签到,获得积分10
8分钟前
Hello应助bin0920采纳,获得10
9分钟前
9分钟前
9分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931102
求助须知:如何正确求助?哪些是违规求助? 3476039
关于积分的说明 10989018
捐赠科研通 3206321
什么是DOI,文献DOI怎么找? 1771932
邀请新用户注册赠送积分活动 859266
科研通“疑难数据库(出版商)”最低求助积分说明 797064