Using Machine Learning Technologies in Pressure Injury Management: Systematic Review

奇纳 科克伦图书馆 梅德林 数据提取 批判性评价 灰色文学 优势和劣势 医学 计算机科学 系统回顾 人工智能 荟萃分析 护理部 心理干预 心理学 病理 替代医学 社会心理学 法学 政治学
作者
Mengyao Jiang,Yuxia Ma,Siyi Guo,Liuqi Jin,Lin Lv,Lin Han,Ning An
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:9 (3): e25704-e25704 被引量:49
标识
DOI:10.2196/25704
摘要

Pressure injury (PI) is a common and preventable problem, yet it is a challenge for at least two reasons. First, the nurse shortage is a worldwide phenomenon. Second, the majority of nurses have insufficient PI-related knowledge. Machine learning (ML) technologies can contribute to lessening the burden on medical staff by improving the prognosis and diagnostic accuracy of PI. To the best of our knowledge, there is no existing systematic review that evaluates how the current ML technologies are being used in PI management.The objective of this review was to synthesize and evaluate the literature regarding the use of ML technologies in PI management, and identify their strengths and weaknesses, as well as to identify improvement opportunities for future research and practice.We conducted an extensive search on PubMed, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, China National Knowledge Infrastructure (CNKI), the Wanfang database, the VIP database, and the China Biomedical Literature Database (CBM) to identify relevant articles. Searches were performed in June 2020. Two independent investigators conducted study selection, data extraction, and quality appraisal. Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST).A total of 32 articles met the inclusion criteria. Twelve of those articles (38%) reported using ML technologies to develop predictive models to identify risk factors, 11 (34%) reported using them in posture detection and recognition, and 9 (28%) reported using them in image analysis for tissue classification and measurement of PI wounds. These articles presented various algorithms and measured outcomes. The overall risk of bias was judged as high.There is an array of emerging ML technologies being used in PI management, and their results in the laboratory show great promise. Future research should apply these technologies on a large scale with clinical data to further verify and improve their effectiveness, as well as to improve the methodological quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁和完成签到,获得积分10
4秒前
6秒前
luo完成签到 ,获得积分10
9秒前
10秒前
12秒前
15秒前
尘染完成签到 ,获得积分10
21秒前
25秒前
wanna完成签到,获得积分10
25秒前
30秒前
海派Hi完成签到 ,获得积分10
31秒前
王南晰完成签到 ,获得积分10
31秒前
qianci2009完成签到,获得积分10
32秒前
受伤问凝完成签到 ,获得积分10
40秒前
42秒前
小孙孙完成签到 ,获得积分10
42秒前
47秒前
50秒前
xxiao完成签到 ,获得积分10
50秒前
tmobiusx完成签到,获得积分10
59秒前
花花完成签到,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
时尚的冰棍儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Lea完成签到,获得积分10
1分钟前
南风完成签到 ,获得积分10
1分钟前
Lea发布了新的文献求助10
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
ycool完成签到 ,获得积分10
1分钟前
独特的高山完成签到 ,获得积分10
1分钟前
荼白完成签到 ,获得积分10
1分钟前
smz完成签到 ,获得积分10
1分钟前
火星上书琴完成签到 ,获得积分10
1分钟前
轻歌水越完成签到 ,获得积分10
1分钟前
1分钟前
传奇完成签到 ,获得积分10
1分钟前
QQ糖完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780879
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758732