Independently Interpretable Lasso for Generalized Linear Models

可解释性 正规化(语言学) 极小极大 过度拟合 数学 线性回归 计算机科学 Lasso(编程语言) 线性模型 人工智能 算法 应用数学 数学优化 机器学习 人工神经网络 万维网
作者
Masashi Takada,Taiji Suzuki,Hironori Fujisawa
出处
期刊:Neural Computation [The MIT Press]
卷期号:32 (6): 1168-1221 被引量:1
标识
DOI:10.1162/neco_a_01279
摘要

Sparse regularization such as [Formula: see text] regularization is a quite powerful and widely used strategy for high-dimensional learning problems. The effectiveness of sparse regularization has been supported practically and theoretically by several studies. However, one of the biggest issues in sparse regularization is that its performance is quite sensitive to correlations between features. Ordinary [Formula: see text] regularization selects variables correlated with each other under weak regularizations, which results in deterioration of not only its estimation error but also interpretability. In this letter, we propose a new regularization method, independently interpretable lasso (IILasso), for generalized linear models. Our proposed regularizer suppresses selecting correlated variables, so that each active variable affects the response independently in the model. Hence, we can interpret regression coefficients intuitively, and the performance is also improved by avoiding overfitting. We analyze the theoretical property of the IILasso and show that the proposed method is advantageous for its sign recovery and achieves almost minimax optimal convergence rate. Synthetic and real data analyses also indicate the effectiveness of the IILasso.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
1秒前
3秒前
3秒前
H东坡发布了新的文献求助20
4秒前
kanyougen发布了新的文献求助50
8秒前
忧郁小刺猬完成签到,获得积分10
9秒前
舒心幼荷发布了新的文献求助20
9秒前
LL完成签到,获得积分10
11秒前
tuzhifengyin完成签到,获得积分10
13秒前
14秒前
陈十八应助mark2021采纳,获得10
14秒前
土地发布了新的文献求助10
15秒前
16秒前
太空工程师完成签到,获得积分10
16秒前
Joe侨发布了新的文献求助30
18秒前
持卿应助豆子采纳,获得10
19秒前
波波波波波6764完成签到 ,获得积分10
19秒前
20秒前
23秒前
Boris完成签到 ,获得积分10
23秒前
24秒前
学术虫完成签到,获得积分10
24秒前
leclerc完成签到,获得积分10
25秒前
土地完成签到,获得积分10
25秒前
26秒前
铲铲完成签到,获得积分10
26秒前
28秒前
朱比特完成签到,获得积分10
28秒前
100完成签到,获得积分10
33秒前
34秒前
madina完成签到,获得积分20
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
SYLH应助科研通管家采纳,获得10
38秒前
块块应助科研通管家采纳,获得10
38秒前
SciGPT应助科研通管家采纳,获得10
39秒前
39秒前
SYLH应助科研通管家采纳,获得10
39秒前
SYLH应助科研通管家采纳,获得10
39秒前
科研通AI5应助清秀送终采纳,获得10
39秒前
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843689
求助须知:如何正确求助?哪些是违规求助? 3386062
关于积分的说明 10543540
捐赠科研通 3106814
什么是DOI,文献DOI怎么找? 1711162
邀请新用户注册赠送积分活动 823956
科研通“疑难数据库(出版商)”最低求助积分说明 774390