A distributed sensing data anomaly detection scheme

计算机科学 异常检测 可靠性(半导体) 无线传感器网络 GSM演进的增强数据速率 方案(数学) 区间(图论) 物联网 异常(物理) 互联网 数据挖掘 数据流挖掘 实时计算 人工智能 计算机网络 计算机安全 量子力学 数学 组合数学 物理 数学分析 万维网 凝聚态物理 功率(物理)
作者
Chunyong Yin,Bo Li,Zhichao Yin
出处
期刊:Computers & Security [Elsevier BV]
卷期号:97: 101960-101960 被引量:10
标识
DOI:10.1016/j.cose.2020.101960
摘要

Abstract With the continuous development of Internet of Things, the information society has gradually entered a new era of the Internet of everything. Sensor nodes are important sources of data in the Internet of Things. The abnormal and failure of sensing data in the Internet of Things will affect the connectivity of the network. If the accuracy and reliability of the corresponding perception data can be effectively improved, we can timely and accurately find out the emergency and monitor the working status of the network. Therefore, it is of great significance to detect the abnormal data of data streams in the sensor network nodes and confirm its source. For the low quality of sensor data collected in real time in IoT, this paper proposes an anomaly detection method for sensing data streams based on edge computing. In this algorithm, the sensor data is expressed in the form of time series. On the edge computing based sensor data anomaly detection model, the improved confidence interval is used to detect whether the data is abnormal. The concept of interval difference is proposed as the judgment of the source of the anomaly. The accuracy and effectiveness of the algorithm are verified by experiments. The results show that the detection rate of abnormal data is above 98%, which indicates that the algorithm has certain practicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfg完成签到,获得积分10
1秒前
1秒前
1秒前
JamesPei应助小慧儿采纳,获得10
1秒前
1秒前
1秒前
1秒前
jon158发布了新的文献求助10
1秒前
1秒前
luoxuezhiyin发布了新的文献求助200
1秒前
1秒前
1秒前
1秒前
2秒前
欧阳半仙完成签到,获得积分10
2秒前
SYLH应助ee采纳,获得10
2秒前
2秒前
2秒前
英姑应助zzz采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
机智的飞鸟完成签到 ,获得积分10
3秒前
刘天宇发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
zcw完成签到,获得积分10
4秒前
4秒前
Freya完成签到 ,获得积分10
4秒前
嗯嗯发布了新的文献求助10
5秒前
穿堂风发布了新的文献求助10
5秒前
悦耳听芹完成签到,获得积分10
5秒前
5秒前
5秒前
dhj发布了新的文献求助10
5秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808655
求助须知:如何正确求助?哪些是违规求助? 3353413
关于积分的说明 10365062
捐赠科研通 3069602
什么是DOI,文献DOI怎么找? 1685698
邀请新用户注册赠送积分活动 810656
科研通“疑难数据库(出版商)”最低求助积分说明 766240