Multi-Habitat Based Radiomics for the Prediction of Treatment Response to Concurrent Chemotherapy and Radiation Therapy in Locally Advanced Cervical Cancer

无线电技术 放射治疗 医学 宫颈癌 化疗 肿瘤科 癌症 内科学 医学物理学 放射科
作者
Mengjie Fang,Yangyang Kan,Di Dong,Tao Yu,Nannan Zhao,Wenyan Jiang,Lianzhen Zhong,C. Y. Hu,Yahong Luo,Jie Tian
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:10 被引量:51
标识
DOI:10.3389/fonc.2020.00563
摘要

Objectives: To develop a radiomic model based on multiparametric magnetic resonance imaging (MRI) for predicting treatment response prior to commencing concurrent chemotherapy and radiation therapy (CCRT) for locally advanced cervical cancer. Materials and Methods: The retrospective study enrolled 120 patients (allocated to a training or a test set) with locally advanced cervical cancer who underwent CCRT between December 2014 and June 2017. All patients enrolled underwent MRI with 9 sequences before treatment and again at the end of the fourth week of treatment. Responses were evaluated by MRI according to RECIST standards, and patients were divided into responder group or non-responder group. For every MRI sequence, a total of 114 radiomic features were extracted from the outlined tumour habitat. On the training set, the least absolute shrinkage and selection operator method was used to select key features and to construct 9 habitat signatures. Then, three kinds of machine learning models were compared and applied to integrate these predictive signatures and the clinical characteristics into a radiomic model. The discrimination ability, reliability and calibration of our radiomic model were evaluated. Results: The radiomic model, which consisted of 3 habitat signatures from sagittal T2 image, axial T1 enhanced-MRI image and ADC image respectively, has shown good predictive performance, with area under the curve of 0.820 (95% CI: 0.713-0.927) in the training set and 0.798 (95% CI: 0.678-0.917) in the test set. Meanwhile, the model was proved to perform better than each single signature or clinical characteristic. Conclusions: A radiomic model employing features from multiple tumour habitats held the ability for predicting treatment response in patients with locally advanced cervical cancer, before commencing CCRT. These results illustrated a potential new tool for improving medical decision-making and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero应助动听千山采纳,获得10
刚刚
球球完成签到,获得积分10
1秒前
飞鸿踏雪泥发布了新的文献求助100
2秒前
丘比特应助鹿芗泽采纳,获得10
2秒前
西瓜妹妹发布了新的文献求助10
3秒前
酷炫的谷丝完成签到,获得积分10
4秒前
wuweizhizhi发布了新的文献求助10
4秒前
5秒前
科研通AI2S应助waoller1采纳,获得10
7秒前
wz完成签到 ,获得积分10
7秒前
7秒前
8秒前
宇宙第一酷girl完成签到,获得积分10
9秒前
11秒前
Xiaojiu发布了新的文献求助10
12秒前
dsw完成签到,获得积分10
12秒前
14秒前
谭平完成签到 ,获得积分10
15秒前
mmz完成签到 ,获得积分10
16秒前
WZJ完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
18秒前
19秒前
友好寄真发布了新的文献求助10
23秒前
25秒前
25秒前
英姑应助123采纳,获得10
26秒前
26秒前
繁荣的代秋完成签到 ,获得积分10
27秒前
冰魂应助SKinner采纳,获得30
28秒前
28秒前
Sg关闭了Sg文献求助
29秒前
知性的冰棍完成签到,获得积分10
29秒前
weidongzhu发布了新的文献求助10
30秒前
喵喵发布了新的文献求助10
30秒前
fy完成签到,获得积分10
32秒前
32秒前
满意语风发布了新的文献求助10
33秒前
444完成签到,获得积分10
33秒前
冷艳的钥匙完成签到,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867153
求助须知:如何正确求助?哪些是违规求助? 3409425
关于积分的说明 10663541
捐赠科研通 3133597
什么是DOI,文献DOI怎么找? 1728321
邀请新用户注册赠送积分活动 832881
科研通“疑难数据库(出版商)”最低求助积分说明 780510