Multi-Habitat Based Radiomics for the Prediction of Treatment Response to Concurrent Chemotherapy and Radiation Therapy in Locally Advanced Cervical Cancer

无线电技术 放射治疗 医学 宫颈癌 化疗 肿瘤科 癌症 内科学 医学物理学 放射科
作者
Mengjie Fang,Yangyang Kan,Di Dong,Tao Yu,Nannan Zhao,Wenyan Jiang,Lianzhen Zhong,C. Y. Hu,Yahong Luo,Jie Tian
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:10 被引量:51
标识
DOI:10.3389/fonc.2020.00563
摘要

Objectives: To develop a radiomic model based on multiparametric magnetic resonance imaging (MRI) for predicting treatment response prior to commencing concurrent chemotherapy and radiation therapy (CCRT) for locally advanced cervical cancer. Materials and Methods: The retrospective study enrolled 120 patients (allocated to a training or a test set) with locally advanced cervical cancer who underwent CCRT between December 2014 and June 2017. All patients enrolled underwent MRI with 9 sequences before treatment and again at the end of the fourth week of treatment. Responses were evaluated by MRI according to RECIST standards, and patients were divided into responder group or non-responder group. For every MRI sequence, a total of 114 radiomic features were extracted from the outlined tumour habitat. On the training set, the least absolute shrinkage and selection operator method was used to select key features and to construct 9 habitat signatures. Then, three kinds of machine learning models were compared and applied to integrate these predictive signatures and the clinical characteristics into a radiomic model. The discrimination ability, reliability and calibration of our radiomic model were evaluated. Results: The radiomic model, which consisted of 3 habitat signatures from sagittal T2 image, axial T1 enhanced-MRI image and ADC image respectively, has shown good predictive performance, with area under the curve of 0.820 (95% CI: 0.713-0.927) in the training set and 0.798 (95% CI: 0.678-0.917) in the test set. Meanwhile, the model was proved to perform better than each single signature or clinical characteristic. Conclusions: A radiomic model employing features from multiple tumour habitats held the ability for predicting treatment response in patients with locally advanced cervical cancer, before commencing CCRT. These results illustrated a potential new tool for improving medical decision-making and therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈先森完成签到,获得积分10
刚刚
在水一方应助caozhanbo采纳,获得10
刚刚
orixero应助XiYang采纳,获得10
1秒前
回复对方发布了新的文献求助10
1秒前
共享精神应助Kate采纳,获得10
2秒前
3秒前
3秒前
xh发布了新的文献求助10
3秒前
Cole完成签到,获得积分10
4秒前
风趣幻枫完成签到,获得积分10
4秒前
4秒前
田様应助Murphy采纳,获得10
5秒前
浮游应助橘子柚子采纳,获得50
5秒前
韭菜何子完成签到,获得积分10
6秒前
Yy发布了新的文献求助30
7秒前
沉默的觅风完成签到 ,获得积分10
7秒前
游阿游完成签到,获得积分10
7秒前
雾月发布了新的文献求助10
8秒前
科研通AI6应助Yianyan采纳,获得10
8秒前
爱吃鱼的猫猫完成签到,获得积分10
8秒前
8秒前
Sygganggang发布了新的文献求助10
9秒前
洁净的天思完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
韭菜何子发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI5应助曾丹么么哒采纳,获得10
12秒前
shu完成签到,获得积分10
13秒前
wz完成签到 ,获得积分10
13秒前
Levieus应助阿巴阿巴茶采纳,获得10
15秒前
与我常在完成签到,获得积分20
15秒前
15秒前
zhang发布了新的文献求助10
16秒前
张姚发布了新的文献求助10
17秒前
huqiao发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
viauue9发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322