异常检测
计算机科学
人工智能
水准点(测量)
卷积神经网络
模式识别(心理学)
特征(语言学)
像素
异常(物理)
基本事实
目标检测
深度学习
领域(数学)
无监督学习
特征提取
地理
数学
地图学
语言学
哲学
物理
凝聚态物理
纯数学
作者
Paul Bergmann,Michael Fauser,David Sattlegger,Carsten Steger
标识
DOI:10.1109/cvpr.2019.00982
摘要
The detection of anomalous structures in natural image data is of utmost importance for numerous tasks in the field of computer vision. The development of methods for unsupervised anomaly detection requires data on which to train and evaluate new approaches and ideas. We introduce the MVTec Anomaly Detection (MVTec AD) dataset containing 5354 high-resolution color images of different object and texture categories. It contains normal, i.e., defect-free, images intended for training and images with anomalies intended for testing. The anomalies manifest themselves in the form of over 70 different types of defects such as scratches, dents, contaminations, and various structural changes. In addition, we provide pixel-precise ground truth regions for all anomalies. We also conduct a thorough evaluation of current state-of-the-art unsupervised anomaly detection methods based on deep architectures such as convolutional autoencoders, generative adversarial networks, and feature descriptors using pre-trained convolutional neural networks, as well as classical computer vision methods. This initial benchmark indicates that there is considerable room for improvement. To the best of our knowledge, this is the first comprehensive, multi-object, multi-defect dataset for anomaly detection that provides pixel-accurate ground truth regions and focuses on real-world applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI