Deep Multimodal Representation Learning: A Survey

计算机科学 模式 多模式学习 特征学习 深度学习 人工智能 钥匙(锁) 多模态 代表(政治) 抽象 透视图(图形) 生成语法 机器学习 数据科学 人机交互 万维网 认识论 哲学 社会学 法学 政治 计算机安全 社会科学 政治学
作者
Wenzhong Guo,Jianwen Wang,Shiping Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 63373-63394 被引量:412
标识
DOI:10.1109/access.2019.2916887
摘要

Multimodal representation learning, which aims to narrow the heterogeneity gap among different modalities, plays an indispensable role in the utilization of ubiquitous multimodal data. Due to the powerful representation ability with multiple levels of abstraction, deep learning-based multimodal representation learning has attracted much attention in recent years. In this paper, we provided a comprehensive survey on deep multimodal representation learning which has never been concentrated entirely. To facilitate the discussion on how the heterogeneity gap is narrowed, according to the underlying structures in which different modalities are integrated, we category deep multimodal representation learning methods into three frameworks: joint representation, coordinated representation, and encoder-decoder. Additionally, we review some typical models in this area ranging from conventional models to newly developed technologies. This paper highlights on the key issues of newly developed technologies, such as encoder-decoder model, generative adversarial networks, and attention mechanism in a multimodal representation learning perspective, which, to the best of our knowledge, have never been reviewed previously, even though they have become the major focuses of much contemporary research. For each framework or model, we discuss its basic structure, learning objective, application scenes, key issues, advantages, and disadvantages, such that both novel and experienced researchers can benefit from this survey. Finally, we suggest some important directions for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助龙共采纳,获得10
刚刚
1秒前
1秒前
2秒前
4秒前
李爱国应助zzzdx采纳,获得10
4秒前
李爱国应助ljq采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
star应助科研通管家采纳,获得150
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
机灵班应助科研通管家采纳,获得30
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
ccm应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
SciGPT应助chopin采纳,获得10
8秒前
科研小白发布了新的文献求助10
9秒前
李冰玉给李冰玉的求助进行了留言
10秒前
情怀应助向野采纳,获得10
11秒前
11秒前
aaa发布了新的文献求助20
11秒前
1轻微完成签到,获得积分10
11秒前
zdesfsfa发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288796
求助须知:如何正确求助?哪些是违规求助? 4440579
关于积分的说明 13825032
捐赠科研通 4322857
什么是DOI,文献DOI怎么找? 2372785
邀请新用户注册赠送积分活动 1368276
关于科研通互助平台的介绍 1332168