Deep Multimodal Representation Learning: A Survey

计算机科学 模式 多模式学习 特征学习 深度学习 人工智能 钥匙(锁) 多模态 代表(政治) 抽象 透视图(图形) 生成语法 机器学习 数据科学 人机交互 万维网 政治 政治学 法学 社会科学 哲学 计算机安全 认识论 社会学
作者
Wenzhong Guo,Jianwen Wang,Shiping Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 63373-63394 被引量:342
标识
DOI:10.1109/access.2019.2916887
摘要

Multimodal representation learning, which aims to narrow the heterogeneity gap among different modalities, plays an indispensable role in the utilization of ubiquitous multimodal data. Due to the powerful representation ability with multiple levels of abstraction, deep learning-based multimodal representation learning has attracted much attention in recent years. In this paper, we provided a comprehensive survey on deep multimodal representation learning which has never been concentrated entirely. To facilitate the discussion on how the heterogeneity gap is narrowed, according to the underlying structures in which different modalities are integrated, we category deep multimodal representation learning methods into three frameworks: joint representation, coordinated representation, and encoder-decoder. Additionally, we review some typical models in this area ranging from conventional models to newly developed technologies. This paper highlights on the key issues of newly developed technologies, such as encoder-decoder model, generative adversarial networks, and attention mechanism in a multimodal representation learning perspective, which, to the best of our knowledge, have never been reviewed previously, even though they have become the major focuses of much contemporary research. For each framework or model, we discuss its basic structure, learning objective, application scenes, key issues, advantages, and disadvantages, such that both novel and experienced researchers can benefit from this survey. Finally, we suggest some important directions for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lan完成签到,获得积分10
2秒前
领导范儿应助自在行采纳,获得10
3秒前
3秒前
4秒前
yaoyh_gc完成签到,获得积分10
4秒前
5秒前
工大机械完成签到,获得积分10
5秒前
Lucas应助warmhelium采纳,获得10
5秒前
Akim应助负责冰海采纳,获得10
6秒前
略略略完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
逢考必过发布了新的文献求助10
9秒前
9秒前
calaite发布了新的文献求助20
10秒前
10秒前
拼搏的败发布了新的文献求助10
11秒前
猪猪hero发布了新的文献求助10
11秒前
little佳完成签到 ,获得积分10
13秒前
鲍尔槐发布了新的文献求助10
14秒前
hh发布了新的文献求助10
15秒前
贪玩灵松发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
典雅问寒应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
Orange应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
zero应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
孙燕应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
孙燕应助科研通管家采纳,获得10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845070
求助须知:如何正确求助?哪些是违规求助? 3387273
关于积分的说明 10548547
捐赠科研通 3108008
什么是DOI,文献DOI怎么找? 1712331
邀请新用户注册赠送积分活动 824355
科研通“疑难数据库(出版商)”最低求助积分说明 774739