Use of Recursive Partitioning Analysis in Clinical Trials and Meta-Analysis of Randomized Clinical Trials, 1990-2016

递归分区 荟萃分析 临床试验 随机对照试验 参数统计 医学 统计 计算机科学 数学 内科学
作者
Martha Fors,Carmen Viada,Paloma González
出处
期刊:Reviews on Recent Clinical Trials [Bentham Science]
卷期号:12 (1): 3-7 被引量:8
标识
DOI:10.2174/1574887111666160916144658
摘要

Recursive Partitioning Analysis (RPA) is a very flexible non parametric algorithm that allows classification of individuals according to certain criteria, particularly in clinical trials, the method is used to predict response to treatment or classify individuals according to prognostic factors.In this paper we examine how often RPA is used in clinical trials and in meta-analysis.We reviewed abstracts published between 1990 and 2016, and extracted data regarding clinical trial phase, year of publication, type of treatment, medical indication and main evaluated endpoints.One hundred and eighty three studies were identified; of these 43 were meta-analyses and 23 were clinical trials. Most of the studies were published between 2011 and 2016, for both clinical trials and meta-analyses of randomized clinical trials. The prediction of overall survival and progression free survival were the outcomes most evaluated, at 43.5% and 51.2% respectively. Regarding the use of RPA in clinical trials, the brain was the most common site studied, while for meta-analytic studies, other cancer sites were also studied. The combination of chemotherapy and radiation was seen frequently in clinical trials.Recursive partitioning analysis is a very easy technique to use, and it could be a very powerful tool to predict response in different subgroups of patients, although it is not widely used in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summerer发布了新的文献求助10
1秒前
1秒前
彭于晏应助乐哉采纳,获得10
2秒前
3秒前
3秒前
搜集达人应助幸福的冷霜采纳,获得10
3秒前
3秒前
坠兔收月发布了新的文献求助10
5秒前
爆米花应助不安平凡采纳,获得30
5秒前
有机菜花完成签到,获得积分10
6秒前
斯文败类应助三点水采纳,获得10
6秒前
fanqie发布了新的文献求助10
6秒前
7秒前
张许昂发布了新的文献求助10
7秒前
酷波er应助李卓采纳,获得10
8秒前
陈俊豪发布了新的文献求助10
8秒前
Isabella完成签到,获得积分10
9秒前
自由的白梦完成签到,获得积分10
9秒前
9秒前
weidandan完成签到,获得积分10
9秒前
如意千儿完成签到 ,获得积分10
9秒前
有机菜花发布了新的文献求助10
10秒前
10秒前
phenory发布了新的文献求助30
10秒前
平淡的一寡应助李幺幺采纳,获得10
11秒前
小二郎应助xiao采纳,获得10
12秒前
hua完成签到,获得积分10
12秒前
orixero应助sadsada采纳,获得10
12秒前
13秒前
13秒前
14秒前
专一的大神完成签到,获得积分10
14秒前
16秒前
游悠悠发布了新的文献求助10
16秒前
细心青烟完成签到,获得积分20
16秒前
凝安发布了新的文献求助10
17秒前
17秒前
共享精神应助森林采纳,获得10
17秒前
情怀应助刘一爱吃西瓜采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481597
求助须知:如何正确求助?哪些是违规求助? 4582625
关于积分的说明 14385853
捐赠科研通 4511310
什么是DOI,文献DOI怎么找? 2472314
邀请新用户注册赠送积分活动 1458592
关于科研通互助平台的介绍 1432094