On Data-Driven Prescriptive Analytics with Side Information: A Regularized Nadaraya–Watson Approach

作者
Yijie Wang,Prateek R. Srivastava,Grani A. Hanasusanto,Chin Pang Ho
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2024.0997
摘要

Problem definition: Motivated by the significance of side information in numerous operations management problems, this paper studies conditional stochastic optimization to enable more informed decisions. The side information constitutes observable exogenous covariates that alter the conditional probability distribution of the random problem parameters. Decision makers who adapt their decisions according to the observed side information solve a stochastic optimization problem where the objective function is specified by the conditional expectation of the random cost. If the joint probability distribution is unknown, then the conditional expectation can be approximated in a data-driven manner using kernel regression. Although this approximation scheme has found successful applications in diverse decision problems under uncertainty, it is largely unknown whether the scheme can provide any reasonable out-of-sample performance guarantees, and how such statistical guarantees can guide the decision-making process. Methodology/results: We employ the Nadaraya–Watson kernel regression for data-driven approximation of the conditional expectation and leverage moderate deviations theory to establish its performance guarantees. Our analysis and resultant statistical bounds motivate the use of a conditional standard deviation regularization scheme to enhance out-of-sample performances. As the designed regularization scheme leads to a nonconvex optimization problem, we further adopt ideas from distributionally robust optimization to obtain tractable formulations. We examine our proposed models on portfolio optimization, inventory management, and wind energy commitment problems. The numerical results demonstrate the effectiveness of our proposed regularization scheme. Managerial implications: Our paper illustrates the importance of side information in real-world decision-making problems. Incorporating side information through a regularized Nadaraya–Watson scheme offers managers a robust framework to enhance decision making under uncertainty. The theoretical guarantees provide guidance on the number of samples required to obtain high-quality solutions and how to optimally adjust the regularization parameter. For problem instances with high-dimensional covariates, we further present a simple dimensionality reduction procedure that helps improve the sample complexity of the scheme. All our proposed formulations are concise and straightforward for the operations manager to implement using any popular programming language interfaced with standard off-the-shelf solvers. Funding: Y. Wang was supported by the National Natural Science Foundation of China [Grant 72501204] and the Fundamental Research Funds for the Central Universities. G. A. Hanasusanto was funded by the National Science Foundation [Grants CCF-2343869 and ECCS-2404413]. C. P. Ho was supported by the Research Grants Council [General Research Fund 11508623] and the CityUHK Start-Up Grant [9610481]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2024.0997 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助麦麦采纳,获得10
1秒前
jrx发布了新的文献求助10
2秒前
2秒前
2秒前
爱撒娇的朋友完成签到,获得积分10
2秒前
WUWEI发布了新的文献求助10
3秒前
4秒前
丘比特应助豆豆突采纳,获得10
4秒前
5秒前
diyi完成签到,获得积分10
5秒前
6秒前
吴彦祖发布了新的文献求助10
6秒前
田田田田完成签到,获得积分10
6秒前
完美世界应助水123采纳,获得10
6秒前
HH完成签到,获得积分10
6秒前
LziT完成签到,获得积分20
7秒前
愉快烧鹅完成签到,获得积分10
7秒前
耍酷傲菡发布了新的文献求助10
7秒前
星仔发布了新的文献求助10
8秒前
舒苏应助严yee采纳,获得10
8秒前
kingdomjust发布了新的文献求助10
8秒前
Shawn完成签到,获得积分10
8秒前
8秒前
zkyyy发布了新的文献求助10
9秒前
程雪霞发布了新的文献求助30
9秒前
srf0602.完成签到,获得积分10
9秒前
shuo0976完成签到,获得积分10
10秒前
10秒前
科研通AI6应助周煜锦采纳,获得10
11秒前
11秒前
lockedcc发布了新的文献求助10
11秒前
阿六发布了新的文献求助10
12秒前
12秒前
13秒前
领导范儿应助Aipoi采纳,获得10
14秒前
14秒前
14秒前
嘻嘻哈哈发布了新的文献求助10
14秒前
李爱国应助111111采纳,获得10
15秒前
科研通AI6应助李秉烛采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266