In this paper an all-optical reservoir computing scheme is modeled, that paves an alternative route to photonic high bit rate header identification in optical networks and allow direct processing in the analog domain. The system consists of randomly interconnected InGaAsP micro-ring-resonators, whereas the computation efficiency of the scheme is based on the ultra-fast Kerr effect and two-photon absorption. Validation of the system's efficiency is confirmed through detailed numerical modeling and two application orientated benchmark tests that consists in the classification of 32bit digital headers, encoded an NRZ optical pulses, with a bitrate of 240Gbps,and the identification of pseudo-analog patters for real time sensing applications in the analog domain.