Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution

声速 反褶积 计算机科学 声学 超声波 背景(考古学) 双层 成像体模 标准差 光学 算法 数学 物理 图层(电子) 材料科学 统计 地质学 古生物学 复合材料
作者
Ho-Chul Shin,Richard W. Prager,Henry Gomersall,Nick Kingsbury,Graham M. Treece,Andrew H. Gee
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:50 (7): 716-725 被引量:20
标识
DOI:10.1016/j.ultras.2010.02.008
摘要

The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of -9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助阿切采纳,获得10
刚刚
1秒前
柯幼萱发布了新的文献求助10
1秒前
kun完成签到,获得积分10
1秒前
小乌龟完成签到,获得积分10
2秒前
背后的傥完成签到,获得积分10
2秒前
LXR发布了新的文献求助10
3秒前
3秒前
兰月满楼发布了新的文献求助20
4秒前
虾仁饭完成签到 ,获得积分10
6秒前
橙子皮发布了新的文献求助30
6秒前
Heavenfalling完成签到,获得积分10
7秒前
阿卫完成签到,获得积分10
7秒前
大地上的鱼完成签到,获得积分10
8秒前
星辰大海应助张东泽采纳,获得10
8秒前
mikasa发布了新的文献求助10
8秒前
赤木发布了新的文献求助10
9秒前
10秒前
杰_骜不驯完成签到,获得积分10
10秒前
打工人完成签到,获得积分10
10秒前
阿切完成签到,获得积分20
10秒前
CipherSage应助LXR采纳,获得10
11秒前
黄新绒完成签到 ,获得积分10
11秒前
大胆诗霜完成签到,获得积分10
12秒前
mikasa完成签到,获得积分10
12秒前
在水一方应助Doraemon-2077采纳,获得10
13秒前
柯幼萱完成签到,获得积分0
14秒前
张铁柱完成签到,获得积分10
15秒前
17秒前
深情雨柏完成签到,获得积分10
17秒前
18秒前
18秒前
20秒前
Hello应助ablexm采纳,获得10
21秒前
Lion发布了新的文献求助10
22秒前
图图应助曜骅采纳,获得10
22秒前
23秒前
苏打水完成签到,获得积分10
24秒前
26秒前
guolllllli完成签到,获得积分20
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834945
求助须知:如何正确求助?哪些是违规求助? 3377456
关于积分的说明 10498418
捐赠科研通 3096911
什么是DOI,文献DOI怎么找? 1705267
邀请新用户注册赠送积分活动 820527
科研通“疑难数据库(出版商)”最低求助积分说明 772110