A Comparison Analysis of Heart Disease Dataset Using Decision Tree and Back-Propagation Network

计算机科学 决策树 树(集合论) 人工智能 数据挖掘 数学 数学分析
作者
Shreya Kalta,Ravindara Bhatt
标识
DOI:10.1109/iciip53038.2021.9702667
摘要

Heart disease is one of the diseases that are becoming a major cause of mortality throughout the world. A large population in the world is suffering from this problem. Considering the death rate and people suffering from heart diseases, reveals the early diagnosis of heart disease. The health care industry generates terabytes of data every day, which requires proper analysis and prediction of data which can be accomplished through data mining which acts as an intelligent diagnostic tool in heart disease diagnosis. In this research work two data mining classification algorithms are used which are Decision tree and Back-propagation network and are built using Python programming language on Anaconda's Jupyter Notebook. The main purpose of this research is to identify and compare the best classification algorithm with the highest degree of accuracy, which will aid professionals in making decisions and diagnosing the probability of occurrence of heart disease in a patient. Thus preventing the loss of lives at the earliest. The heart disease dataset was obtained from Kaggle with 303 patient records and 14 essential clinical features and the output classifies whether or not a person has heart disease. After the comparative analysis the results proved that Back-propagation gives better results and shows greater accuracy which is 93% as compared to Decision tree.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助陈秀娟采纳,获得10
刚刚
1秒前
yao chen完成签到,获得积分10
1秒前
活着完成签到,获得积分10
3秒前
LLL完成签到,获得积分10
3秒前
大地上的鱼完成签到,获得积分10
3秒前
luoye完成签到,获得积分10
3秒前
吴谷杂粮发布了新的文献求助10
5秒前
5秒前
moom发布了新的文献求助10
6秒前
Fern完成签到 ,获得积分10
7秒前
8秒前
月月完成签到,获得积分10
9秒前
Inanopig完成签到,获得积分10
9秒前
云轻发布了新的文献求助10
10秒前
zho应助123采纳,获得10
11秒前
12秒前
wangrblzu应助jyyg采纳,获得10
13秒前
吴谷杂粮完成签到,获得积分10
13秒前
科目三应助称心的语梦采纳,获得10
14秒前
281911480完成签到,获得积分10
15秒前
16秒前
苹果易真完成签到,获得积分10
16秒前
脑洞疼应助Gitty采纳,获得10
18秒前
大个应助小高采纳,获得10
18秒前
大气的尔蓝完成签到,获得积分10
19秒前
JY完成签到,获得积分10
20秒前
21秒前
阳光的嫣发布了新的文献求助10
21秒前
上官若男应助弄井采纳,获得30
22秒前
23秒前
26秒前
永远发布了新的文献求助10
26秒前
27秒前
szj完成签到,获得积分10
27秒前
小刘完成签到,获得积分10
27秒前
Lucas应助lllwy采纳,获得10
27秒前
MSYzack发布了新的文献求助10
28秒前
28秒前
墨兮完成签到 ,获得积分10
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822995
求助须知:如何正确求助?哪些是违规求助? 3365595
关于积分的说明 10435873
捐赠科研通 3084585
什么是DOI,文献DOI怎么找? 1696874
邀请新用户注册赠送积分活动 816071
科研通“疑难数据库(出版商)”最低求助积分说明 769389