GameDKT: Deep knowledge tracing in educational games

计算机科学 追踪 任务(项目管理) 跟踪(心理语言学) 教育游戏 基线(sea) 钥匙(锁) 人工智能 领域知识 领域(数学分析) 深度学习 机器学习 国家(计算机科学) 基于游戏的学习 人机交互 多媒体 程序设计语言 数学 管理 经济 哲学 计算机安全 数学分析 地质学 海洋学 语言学
作者
Danial Hooshyar,Yueh‐Min Huang,Yeongwook Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:196: 116670-116670 被引量:27
标识
DOI:10.1016/j.eswa.2022.116670
摘要

Despite the multiple deep knowledge tracing (DKT) methods developed for intelligent tutoring systems and online learning environments, there exists only a few applications of such methods in educational computer games. One key challenge is that a player may deploy several interweaved and overlapped skills during gameplay, making the assessment task nontrivial. In this research, we present a generalizable DKT approach called GameDKT that integrates state-of-the-art machine learning with domain knowledge to model the learners’ knowledge state during gameplay, in an attempt to monitor and trace their proficiency level for the different skills required for educational games. Our findings reveal that GameDKT approach could successfully predict the performance of players in the coming game task using the cross-validated CNN model with accuracy and AUC of roughly 85% and 0.913, respectively, thus outperforming the MLP baseline model by up to 14%. When the performance of players is forecasted for up to four game tasks in advance, results show that the CNN model can achieve more than 70% accuracy. Interestingly, this model seems to be better and faster at identifying local patterns and it could achieve a higher performance compared to RNN and LSTM in both one-step and multi-step prediction of learners’ performance in game tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WGS发布了新的文献求助10
1秒前
在水一方应助英勇的蜡烛采纳,获得10
1秒前
1秒前
满锅发布了新的文献求助10
1秒前
1秒前
思源应助内向晓旋采纳,获得10
2秒前
啾啾发布了新的文献求助10
2秒前
J1Ang完成签到,获得积分10
2秒前
传奇3应助wuwen采纳,获得10
2秒前
2秒前
xxp6660427发布了新的文献求助10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
iam小羊人发布了新的文献求助10
2秒前
妙aaa发布了新的文献求助10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
林夕发布了新的文献求助10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
雨萱完成签到,获得积分10
3秒前
小青椒应助科研通管家采纳,获得150
3秒前
3秒前
3秒前
lilili应助科研通管家采纳,获得150
3秒前
4秒前
哈基米德应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得30
4秒前
兰彻发布了新的文献求助10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
小青椒应助科研通管家采纳,获得50
5秒前
研究生end应助吗喽采纳,获得20
5秒前
期天应助科研通管家采纳,获得30
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助仔拉采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987