Machine Learning Prediction Models for Gestational Diabetes Mellitus: Meta-analysis

糖尿病 医学 妊娠期糖尿病 计算机科学 怀孕 人工智能 机器学习 内分泌学 妊娠期 遗传学 生物
作者
Zheqing Zhang,Luqian Yang,Wentao Han,Yaoyu Wu,Linhui Zhang,Chun Gao,Kui Jiang,Yun Liu,Huiqun Wu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:24 (3): e26634-e26634 被引量:71
标识
DOI:10.2196/26634
摘要

Gestational diabetes mellitus (GDM) is a common endocrine metabolic disease, involving a carbohydrate intolerance of variable severity during pregnancy. The incidence of GDM-related complications and adverse pregnancy outcomes has declined, in part, due to early screening. Machine learning (ML) models are increasingly used to identify risk factors and enable the early prediction of GDM.The aim of this study was to perform a meta-analysis and comparison of published prognostic models for predicting the risk of GDM and identify predictors applicable to the models.Four reliable electronic databases were searched for studies that developed ML prediction models for GDM in the general population instead of among high-risk groups only. The novel Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias of the ML models. The Meta-DiSc software program (version 1.4) was used to perform the meta-analysis and determination of heterogeneity. To limit the influence of heterogeneity, we also performed sensitivity analyses, a meta-regression, and subgroup analysis.A total of 25 studies that included women older than 18 years without a history of vital disease were analyzed. The pooled area under the receiver operating characteristic curve (AUROC) for ML models predicting GDM was 0.8492; the pooled sensitivity was 0.69 (95% CI 0.68-0.69; P<.001; I2=99.6%) and the pooled specificity was 0.75 (95% CI 0.75-0.75; P<.001; I2=100%). As one of the most commonly employed ML methods, logistic regression achieved an overall pooled AUROC of 0.8151, while non-logistic regression models performed better, with an overall pooled AUROC of 0.8891. Additionally, maternal age, family history of diabetes, BMI, and fasting blood glucose were the four most commonly used features of models established by the various feature selection methods.Compared to current screening strategies, ML methods are attractive for predicting GDM. To expand their use, the importance of quality assessments and unified diagnostic criteria should be further emphasized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
科研通AI5应助孙新然采纳,获得10
2秒前
失眠依珊发布了新的文献求助10
2秒前
5秒前
隐形曼青应助sharony采纳,获得10
5秒前
6秒前
DGYT7786完成签到 ,获得积分10
7秒前
二三三发布了新的文献求助10
7秒前
null发布了新的文献求助10
7秒前
Orange应助泡泡鱼采纳,获得10
8秒前
9秒前
PPP完成签到,获得积分10
10秒前
小马甲应助木子121采纳,获得10
10秒前
实验的兔纸完成签到,获得积分10
10秒前
jy完成签到,获得积分10
10秒前
王森发布了新的文献求助10
12秒前
我是老大应助Dawn采纳,获得10
12秒前
茶白发布了新的文献求助10
12秒前
12秒前
15秒前
周雪娇完成签到,获得积分10
16秒前
18秒前
浮浮世世发布了新的文献求助10
19秒前
19秒前
体贴代容完成签到,获得积分10
22秒前
耶啵发布了新的文献求助30
22秒前
Yuan发布了新的文献求助10
22秒前
23秒前
阔达代芹完成签到,获得积分10
23秒前
24秒前
泡泡鱼发布了新的文献求助10
24秒前
浮游应助论文都见刊采纳,获得10
26秒前
一杯沧海完成签到 ,获得积分10
28秒前
29秒前
29秒前
31秒前
柯夫子发布了新的文献求助10
31秒前
ll完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4635715
求助须知:如何正确求助?哪些是违规求助? 4030533
关于积分的说明 12470821
捐赠科研通 3717162
什么是DOI,文献DOI怎么找? 2051489
邀请新用户注册赠送积分活动 1082657
科研通“疑难数据库(出版商)”最低求助积分说明 964860