化学
细菌
盐度
反硝化
硝化作用
好氧反硝化
异养
氮气
环境化学
生物化学
反硝化细菌
生物
生态学
遗传学
有机化学
作者
Ailing Chen,Xia Su,Zhilin Xing,Fuqing Xu,Shang-jie Chen,Jinxin Xiang,Juan Li,Hao Liu,Tiantao Zhao
标识
DOI:10.1016/j.envres.2022.113834
摘要
One of the biggest challenges of applying heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria to treat high salt organic wastewater lies in the inhibitory effect exerted by salinity. To study the inhibition effect and underlying mechanism induced by different ion types and ion composition, the individual and combined effects of NaCl, KCl and Na2SO4 on HN-AD bacteria Acinetobacter sp. TAC-1 were systematically investigated by batch experiments. Results indicated that the ammonia nitrogen removal yield and TAC-1 activity decreased with increased salt concentration. NaCl, KCl and Na2SO4 exerted different degrees of inhibition on TAC-1, with half concentration inhibition constant values of 0.205, 0.238 and 0.110 M, respectively. A synergistic effect on TAC-1 was found with the combinations of NaCl + KCl, NaCl + Na2SO4 and NaCl + KCl + Na2SO4. The whole RNA resequencing suggested that transcripts of denitrification genes (nirB and nasA) were significantly downregulated with increased Na2SO4 concentration. Simultaneously, Na2SO4 stress disrupted cell respiration, DNA replication, transcription, translation, and induced oxidative stress. Finally, we proposed a conceptual model to summarize the inhibition mechanisms and possible response strategies of TAC-1 bacteria under Na2SO4 stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI