Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling

细菌 高光谱成像 污染 卷积神经网络 人工智能 模式识别(心理学) 核(代数) 均方误差 线性判别分析 计算机科学 人工神经网络 方向(向量空间) 数学 统计 生物 组合数学 数学分析 生态学 几何学
作者
Shekh Mukhtar Mansuri,Subir Kumar Chakraborty,Naveen Kumar Mahanti,R. Pandiselvam
出处
期刊:Food Control [Elsevier BV]
卷期号:139: 109077-109077 被引量:58
标识
DOI:10.1016/j.foodcont.2022.109077
摘要

Fungal contamination of maize during pre and post-harvest is rampant and omnipresent. Hyperspectral imaging (HSI) is a popular non-invasive technique for detection of fungal contamination in maize kernels and secures acceptance for online implementation. Designed experiments were conducted to identify the effectiveness of models (Partial Least Square- Discriminant Analysis-(PLS-DA); Artificial Neural Network (ANN); and 1D-Convolutional neural network (CNN) for predicting fungal contamination of maize kernels in relation to orientation of germ with respect to the lens of HSI (398–1003 nm) camera. Pixel wise dataset was collected for two groups of maize kernels such as sterile (G1) and Aspergillus niger contaminated (G2) and each having 100 maize kernels imaged in germ-up (GU), germ-down (GD) and germ-randomly (GR) positioned; all the three models were trained with these datasets. It was observed that in terms of “error-rate” the prediction capability was best for GU (1.31, 1D-CNN) followed by GR (1.65, ANN) and GD (1.95, ANN). In case of a mismatch of trained and testing dataset for the various models, it was observed that GR exhibited the lowest average error rates of 5.71, 4.94 and 3.15 for PLS-DA, ANN and 1D-CNN, respectively. From the results obtained in the present study confirmed that HSI along with suitable classification technique with proper germ orientation can be used to separate the infected grains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紧张的冥发布了新的文献求助20
1秒前
fighting完成签到,获得积分10
2秒前
2秒前
暴躁的元灵完成签到,获得积分10
3秒前
Music完成签到,获得积分10
4秒前
bkagyin应助obsession采纳,获得10
5秒前
5秒前
7秒前
养花低手完成签到 ,获得积分10
7秒前
aaaaa完成签到,获得积分10
8秒前
李金玉发布了新的文献求助10
9秒前
10秒前
酷波er应助binwuO1234采纳,获得10
11秒前
uwasa完成签到,获得积分10
12秒前
12秒前
Finger发布了新的文献求助10
13秒前
luckybei完成签到,获得积分10
16秒前
17秒前
obsession发布了新的文献求助10
18秒前
2729671659完成签到,获得积分10
19秒前
廖同学完成签到 ,获得积分10
20秒前
尹天扬完成签到,获得积分10
20秒前
优秀剑愁完成签到 ,获得积分10
20秒前
Leon Lai完成签到,获得积分0
20秒前
penguin完成签到,获得积分10
21秒前
21秒前
许许发布了新的文献求助10
24秒前
墨雪晨曦完成签到,获得积分10
24秒前
25秒前
丫丫完成签到,获得积分10
25秒前
酷波er应助T拐拐采纳,获得10
27秒前
27秒前
我666完成签到,获得积分10
27秒前
binwuO1234给binwuO1234的求助进行了留言
28秒前
丫丫发布了新的文献求助10
28秒前
28秒前
28秒前
完美世界应助平淡的凌柏采纳,获得10
31秒前
科研通AI5应助王晓林采纳,获得20
31秒前
德育完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919305
求助须知:如何正确求助?哪些是违规求助? 4191351
关于积分的说明 13017052
捐赠科研通 3961629
什么是DOI,文献DOI怎么找? 2171783
邀请新用户注册赠送积分活动 1189709
关于科研通互助平台的介绍 1098342