Quality 4.0 – an evolution of Six Sigma DMAIC

六西格玛 DMAIC公司 质量(理念) 质量功能配置 过程(计算) 控制(管理) 精益六西格玛 六西格玛设计 计算机科学 过程管理 质量管理 软件部署 制造工程 工程类 风险分析(工程) 管理科学 人工智能 运营管理 业务 精益制造 软件工程 管理制度 哲学 操作系统 认识论 价值工程
作者
Carlos Alberto Escobar,Daniela Macias,Megan E. McGovern,Marcela Hernández-de-Menéndez,Rubén Morales-Menéndez
出处
期刊:International Journal of Lean Six Sigma [Emerald (MCB UP)]
卷期号:13 (6): 1200-1238 被引量:39
标识
DOI:10.1108/ijlss-05-2021-0091
摘要

Purpose Manufacturing companies can competitively be recognized among the most advanced and influential companies in the world by successfully implementing Quality 4.0. However, its successful implementation poses one of the most relevant challenges to the Industry 4.0. According to recent surveys, 80%–87% of data science projects never make it to production. Regardless of the low deployment success rate, more than 75% of investors are maintaining or increasing their investments in artificial intelligence (AI). To help quality decision-makers improve the current situation, this paper aims to review Process Monitoring for Quality (PMQ), a Quality 4.0 initiative, along with its practical and managerial implications. Furthermore, a real case study is presented to demonstrate its application. Design/methodology/approach The proposed Quality 4.0 initiative improves conventional quality control methods by monitoring a process and detecting defective items in real time. Defect detection is formulated as a binary classification problem. Using the same path of Six Sigma define, measure, analyze, improve, control, Quality 4.0-based innovation is guided by Identify, Acsensorize, Discover, Learn, Predict, Redesign and Relearn (IADLPR 2 ) – an ad hoc seven-step problem-solving approach. Findings The IADLPR 2 approach has the ability to identify and solve engineering intractable problems using AI. This is especially intriguing because numerous quality-driven manufacturing decision-makers consistently cite difficulties in developing a business vision for this technology. Practical implications From the proposed method, quality-driven decision-makers will learn how to launch a Quality 4.0 initiative, while quality-driven engineers will learn how to systematically solve intractable problems through AI. Originality/value An anthology of the own projects enables the presentation of a comprehensive Quality 4.0 initiative and reports the approach’s first case study IADLPR 2 . Each of the steps is used to solve a real General Motors’ case study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助dx采纳,获得100
2秒前
Boffican完成签到,获得积分20
2秒前
脑洞疼应助陈王采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Ru完成签到,获得积分10
3秒前
MiaQ发布了新的文献求助10
3秒前
xuan发布了新的文献求助10
3秒前
小杰完成签到,获得积分10
4秒前
菠萝冰棒完成签到,获得积分10
6秒前
6秒前
小马甲应助一条小鱼采纳,获得10
7秒前
9秒前
9秒前
10秒前
开心一笑发布了新的文献求助10
11秒前
12秒前
小青椒应助邓洪涛采纳,获得60
13秒前
疯狂的凌翠完成签到 ,获得积分10
14秒前
OKC发布了新的文献求助10
14秒前
高尚完成签到,获得积分10
14秒前
陈梓锋完成签到 ,获得积分10
14秒前
shareef发布了新的文献求助10
15秒前
闪闪的烁烁完成签到,获得积分10
15秒前
wongtinlun发布了新的文献求助10
15秒前
xiyaxia完成签到 ,获得积分10
16秒前
16秒前
勤恳的竺完成签到,获得积分10
16秒前
英姑应助今夕何夕采纳,获得10
16秒前
晨曦发布了新的文献求助10
17秒前
songsongsong发布了新的文献求助10
18秒前
无私鹰完成签到,获得积分10
19秒前
mashibeo应助闪闪的烁烁采纳,获得10
19秒前
LMX完成签到 ,获得积分10
20秒前
KMidly完成签到 ,获得积分10
20秒前
21秒前
17381362015发布了新的文献求助10
21秒前
21秒前
顾矜应助yian采纳,获得10
23秒前
XUNAN发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449198
求助须知:如何正确求助?哪些是违规求助? 4557419
关于积分的说明 14263155
捐赠科研通 4480370
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445133
关于科研通互助平台的介绍 1420965