Quality 4.0 – an evolution of Six Sigma DMAIC

六西格玛 DMAIC公司 质量(理念) 质量功能配置 过程(计算) 控制(管理) 精益六西格玛 六西格玛设计 计算机科学 过程管理 质量管理 软件部署 制造工程 工程类 风险分析(工程) 管理科学 人工智能 运营管理 业务 精益制造 软件工程 管理制度 哲学 价值工程 认识论 操作系统
作者
Carlos Alberto Escobar,Daniela Macias,Megan E. McGovern,Marcela Hernández-de-Menéndez,Rubén Morales-Menéndez
出处
期刊:International Journal of Lean Six Sigma [Emerald Publishing Limited]
卷期号:13 (6): 1200-1238 被引量:34
标识
DOI:10.1108/ijlss-05-2021-0091
摘要

Purpose Manufacturing companies can competitively be recognized among the most advanced and influential companies in the world by successfully implementing Quality 4.0. However, its successful implementation poses one of the most relevant challenges to the Industry 4.0. According to recent surveys, 80%–87% of data science projects never make it to production. Regardless of the low deployment success rate, more than 75% of investors are maintaining or increasing their investments in artificial intelligence (AI). To help quality decision-makers improve the current situation, this paper aims to review Process Monitoring for Quality (PMQ), a Quality 4.0 initiative, along with its practical and managerial implications. Furthermore, a real case study is presented to demonstrate its application. Design/methodology/approach The proposed Quality 4.0 initiative improves conventional quality control methods by monitoring a process and detecting defective items in real time. Defect detection is formulated as a binary classification problem. Using the same path of Six Sigma define, measure, analyze, improve, control, Quality 4.0-based innovation is guided by Identify, Acsensorize, Discover, Learn, Predict, Redesign and Relearn (IADLPR 2 ) – an ad hoc seven-step problem-solving approach. Findings The IADLPR 2 approach has the ability to identify and solve engineering intractable problems using AI. This is especially intriguing because numerous quality-driven manufacturing decision-makers consistently cite difficulties in developing a business vision for this technology. Practical implications From the proposed method, quality-driven decision-makers will learn how to launch a Quality 4.0 initiative, while quality-driven engineers will learn how to systematically solve intractable problems through AI. Originality/value An anthology of the own projects enables the presentation of a comprehensive Quality 4.0 initiative and reports the approach’s first case study IADLPR 2 . Each of the steps is used to solve a real General Motors’ case study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wintersss发布了新的文献求助10
刚刚
wanci应助万宁采纳,获得10
1秒前
kanuary发布了新的文献求助50
2秒前
加油发布了新的文献求助10
2秒前
3秒前
yliaoyou完成签到,获得积分10
4秒前
诚心幻柏完成签到,获得积分20
4秒前
103921wjk发布了新的文献求助10
5秒前
6秒前
晚风发布了新的文献求助10
6秒前
6秒前
忧郁芹菜完成签到,获得积分20
7秒前
星辰大海应助nunu采纳,获得10
8秒前
踏实小蘑菇完成签到,获得积分10
8秒前
奇客完成签到,获得积分10
8秒前
10秒前
11秒前
CipherSage应助酷炫的不二采纳,获得10
11秒前
芋圆完成签到 ,获得积分10
11秒前
852应助鳥鳥采纳,获得10
12秒前
13秒前
脑洞疼应助wyyp采纳,获得10
13秒前
16秒前
liujunhong完成签到,获得积分10
16秒前
晚风完成签到,获得积分10
16秒前
16秒前
隐形曼青应助挣钱养刺猬采纳,获得30
17秒前
重要从灵完成签到,获得积分10
17秒前
Akim应助qq采纳,获得10
20秒前
liujunhong发布了新的文献求助10
20秒前
21秒前
22秒前
24秒前
科研通AI5应助平常雨泽采纳,获得10
24秒前
SciGPT应助今天不晚饭吃采纳,获得10
25秒前
忧郁的海豚关注了科研通微信公众号
25秒前
诚心幻柏发布了新的文献求助10
25秒前
汉堡包应助夹子方糖采纳,获得10
26秒前
27秒前
单纯冷松完成签到,获得积分10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815115
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10400037
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689964
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642