趋同(经济学)
鉴定(生物学)
永磁同步电动机
非线性系统
维数(图论)
计算机科学
过程(计算)
数学优化
算法
控制理论(社会学)
数学
磁铁
人工智能
工程类
物理
操作系统
生物
机械工程
量子力学
经济
纯数学
控制(管理)
植物
经济增长
作者
Xianwei Ke,Jinliang Zhang,Wei Jian,Guosheng Peng,Yufeng Chen
出处
期刊:Lecture notes in electrical engineering
日期:2022-01-01
卷期号:: 547-555
被引量:1
标识
DOI:10.1007/978-981-19-0572-8_70
摘要
To solve the multi-parameter identification problem of permanent magnet synchronous motor (PMSM), an improved Grey Wolf Optimizer (IGWO) algorithm is proposed. Firstly, the nonlinear convergence strategy is introduced to overcome the shortcoming of the linear convergence of Grey Wolf Optimizer (GWO) algorithm. Secondly, the coefficient weights of wolf α, β and δ are adjusted in the location update to highlight the impact of wolf α. Finally, dimension-learning-based hunting (DLH) optimization strategy is added to improve the diversity of the optimization process. The simulation results show that the proposed IGWO has higher precision and faster convergence speed for multi-parameter identification of PMSM.
科研通智能强力驱动
Strongly Powered by AbleSci AI