败血症
免疫系统
免疫失调
危险分层
免疫学
转录组
医学
分层(种子)
内科学
基因表达
基因
生物
种子休眠
发芽
植物
生物化学
休眠
作者
Eddie Cano-Gamez,Katie L. Burnham,Cyndi Goh,Zunaira H. Malick,Andrew Kwok,David A. Smith,Hessel Peters‐Sengers,David Antcliffe,Stuart McKechnie,Brendon P. Scicluna,Tom van der Poll,Anthony Gordon,Charles Hinds,Emma E. Davenport,Julian C. Knight
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
日期:2022-03-18
被引量:3
标识
DOI:10.1101/2022.03.17.22272427
摘要
Abstract Dysregulated host responses to infection can lead to organ dysfunction and sepsis, causing millions of deaths globally each year. To alleviate this burden, improved prognostication and biomarkers of response are urgently needed. We investigated the use of whole blood transcriptomics for stratification of patients with severe infection by integrating data from 3,149 samples of sepsis patients and healthy individuals into a gene expression reference map. We used this map to derive a quantitative sepsis response signature (SRSq) score reflective of immune dysfunction and predictive of clinical outcomes, which can be estimated using a 19-gene signature. Finally, we built a machine learning framework, SepstratifieR, to deploy SRSq in sepsis, H1N1 influenza, and COVID-19, demonstrating clinically relevant stratification across diseases and revealing the physiological alterations linking immune dysregulation to mortality. Our method enables early identification of individuals with dysfunctional immune profiles, thus bringing us closer to precision medicine in infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI