A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions

计算机科学 杠杆(统计) 推荐系统 领域(数学分析) 领域(数学) 数据科学 分类学(生物学) 冷启动(汽车) 人工智能 情报检索 数学分析 植物 数学 生物 纯数学 工程类 航空航天工程
作者
Tianzi Zang,Yanmin Zhu,Haobing Liu,Ruohan Zhang,Jiadi Yu
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (2): 1-39 被引量:56
标识
DOI:10.1145/3548455
摘要

Traditional recommendation systems are faced with two long-standing obstacles, namely data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Since the early 2010s, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey article, we first proposed a two-level taxonomy of cross-domain recommendation that classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuaaaann发布了新的文献求助10
刚刚
落寞的春天完成签到,获得积分10
2秒前
didi完成签到 ,获得积分10
2秒前
3秒前
4秒前
5秒前
方董发布了新的文献求助10
8秒前
小星发布了新的文献求助10
8秒前
9秒前
xiawanren00完成签到,获得积分10
9秒前
一帆风顺发布了新的文献求助10
10秒前
orixero应助yuaaaann采纳,获得10
10秒前
12秒前
脑洞疼应助无所谓的啦采纳,获得10
13秒前
Ava应助无所谓的啦采纳,获得10
13秒前
dgq_81发布了新的文献求助10
13秒前
Owen应助无所谓的啦采纳,获得10
13秒前
斯文败类应助无所谓的啦采纳,获得10
13秒前
香蕉觅云应助无所谓的啦采纳,获得10
13秒前
研友_VZG7GZ应助无所谓的啦采纳,获得10
13秒前
FashionBoy应助无所谓的啦采纳,获得10
13秒前
烟花应助无所谓的啦采纳,获得10
13秒前
小蘑菇应助无所谓的啦采纳,获得10
14秒前
湖以应助无所谓的啦采纳,获得10
14秒前
超级语芹完成签到,获得积分20
15秒前
赘婿应助syf采纳,获得10
16秒前
17秒前
18秒前
风清扬发布了新的文献求助10
18秒前
jj发布了新的文献求助20
19秒前
control完成签到,获得积分10
21秒前
超级语芹发布了新的文献求助30
21秒前
PA应助XY采纳,获得10
22秒前
sunglow11完成签到,获得积分0
23秒前
bob完成签到,获得积分10
23秒前
dgq_81完成签到,获得积分10
24秒前
俞秋烟发布了新的文献求助10
24秒前
24秒前
24秒前
脑洞疼应助小星采纳,获得10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767