Abstractive text summarization using deep learning with a new Turkish summarization benchmark dataset

自动汇总 计算机科学 标题 水准点(测量) 胭脂 情报检索 人工智能 土耳其 自然语言处理 深度学习 判决 多文档摘要 排名(信息检索) 语言学 地理 哲学 大地测量学
作者
Fatih Ertam,Galip Aydın
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (9) 被引量:10
标识
DOI:10.1002/cpe.6482
摘要

Abstract Exponential increase in the amount of textual data made available on the Internet results in new challenges in terms of accessing information accurately and quickly. Text summarization can be defined as reducing the dimensions of the expressions to be summarized without spoiling the meaning. Summarization can be performed as extractive and abstractive or using both together. In this study, we focus on abstractive summarization which can produce more human‐like summarization results. For the study we created a Turkish news summarization benchmark dataset from various news agency web portals by crawling the news title, short news, news content, and keywords for the last 5 years. The dataset is made publicly available for researchers. The deep learning network training was carried out by using the news headlines and short news contents from the prepared dataset and then the network was expected to create the news headline as the short news summary. To evaluate the performance of this study, Rouge‐1, Rouge‐2, and Rouge‐L were compared using precision, sensitivity and F1 measure scores. Performance values for the study were presented for each sentence as well as by averaging the results for 50 randomly selected sentences. The F1 Measure values are 0.4317, 0.2194, and 0.4334 for Rouge‐1, Rouge‐2, and Rouge‐L respectively. Performance results show that the approach is promising for Turkish text summarization studies and the prepared dataset will add value to the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiao_Ye发布了新的文献求助50
1秒前
小熊猫发布了新的文献求助10
2秒前
蓝天完成签到,获得积分10
3秒前
隐形曼青应助hyx采纳,获得10
4秒前
糕糕完成签到,获得积分10
4秒前
共享精神应助哈哈哈哈哈采纳,获得10
5秒前
西西发布了新的文献求助10
6秒前
yst完成签到,获得积分20
6秒前
天天快乐应助义气的丹萱采纳,获得10
7秒前
Treasure完成签到,获得积分10
8秒前
科研通AI5应助清枫采纳,获得10
8秒前
爆米花应助米奇妙妙虫采纳,获得10
9秒前
科研通AI5应助云之上采纳,获得10
9秒前
科研通AI2S应助ssw采纳,获得10
10秒前
13秒前
垃圾桶发布了新的文献求助30
13秒前
14秒前
Hello应助Math4396采纳,获得10
15秒前
小陆发布了新的文献求助10
15秒前
15秒前
16秒前
18秒前
沐夏完成签到,获得积分10
18秒前
yst发布了新的文献求助10
19秒前
科研通AI5应助小熊猫采纳,获得30
19秒前
20秒前
合适忆之完成签到,获得积分10
20秒前
20秒前
不要加糖发布了新的文献求助10
21秒前
徐果发布了新的文献求助10
22秒前
yyxmh羽儿发布了新的文献求助10
22秒前
慈祥的蛋挞完成签到,获得积分10
22秒前
jx完成签到,获得积分10
22秒前
23秒前
多情宛海完成签到 ,获得积分10
23秒前
Math4396发布了新的文献求助10
24秒前
妞妞完成签到,获得积分10
24秒前
科研通AI5应助秦pale采纳,获得10
26秒前
26秒前
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150