DPFL-Nets: Deep Pyramid Feature Learning Networks for Multiscale Change Detection

变更检测 棱锥(几何) 计算机科学 人工智能 像素 模式识别(心理学) 特征(语言学) 骨料(复合) 一致性(知识库) 转化(遗传学) 同种类的 图像(数学) 数学 语言学 哲学 材料科学 几何学 生物化学 化学 组合数学 复合材料 基因
作者
Meijuan Yang,Licheng Jiao,Fang Liu,Biao Hou,Shuyuan Yang,Meng Jian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6402-6416 被引量:30
标识
DOI:10.1109/tnnls.2021.3079627
摘要

Due to the complementary properties of different types of sensors, change detection between heterogeneous images receives increasing attention from researchers. However, change detection cannot be handled by directly comparing two heterogeneous images since they demonstrate different image appearances and statistics. In this article, we propose a deep pyramid feature learning network (DPFL-Net) for change detection, especially between heterogeneous images. DPFL-Net can learn a series of hierarchical features in an unsupervised fashion, containing both spatial details and multiscale contextual information. The learned pyramid features from two input images make unchanged pixels matched exactly and changed ones dissimilar and after transformed into the same space for each scale successively. We further propose fusion blocks to aggregate multiscale difference images (DIs), generating an enhanced DI with strong separability. Based on the enhanced DI, unchanged areas are predicted and used to train DPFL-Net in the next iteration. In this article, pyramid features and unchanged areas are updated alternately, leading to an unsupervised change detection method. In the feature transformation process, local consistency is introduced to constrain the learned pyramid features, modeling the correlations between the neighboring pixels and reducing the false alarms. Experimental results demonstrate that the proposed approach achieves superior or at least comparable results to the existing state-of-the-art change detection methods in both homogeneous and heterogeneous cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燮老板的账号完成签到,获得积分10
1秒前
充电宝应助sybs采纳,获得10
1秒前
pengchen完成签到 ,获得积分10
1秒前
土豪的长颈鹿完成签到,获得积分10
2秒前
小二郎应助successor8888采纳,获得10
2秒前
Jasper应助successor8888采纳,获得10
2秒前
2秒前
顾冷安完成签到,获得积分20
2秒前
勤劳白容完成签到,获得积分10
2秒前
2233完成签到,获得积分10
3秒前
xyzhang完成签到,获得积分10
3秒前
杰尼龟006发布了新的文献求助10
3秒前
mingming发布了新的文献求助10
3秒前
香蕉觅云应助CL采纳,获得10
4秒前
大个应助JEEH采纳,获得10
4秒前
原点给原点的求助进行了留言
5秒前
JJM完成签到,获得积分10
5秒前
潇洒绿蕊完成签到,获得积分10
5秒前
可爱的函函应助田...采纳,获得10
5秒前
大豪子完成签到 ,获得积分10
6秒前
咩咩完成签到,获得积分10
6秒前
6秒前
KH完成签到,获得积分10
7秒前
bei完成签到,获得积分10
8秒前
果果完成签到,获得积分10
8秒前
大鸭梨完成签到,获得积分10
8秒前
顾冷安发布了新的文献求助10
8秒前
马喽完成签到,获得积分10
8秒前
reap完成签到,获得积分10
8秒前
9秒前
Gilana应助白枫采纳,获得10
9秒前
动如脱兔完成签到,获得积分10
9秒前
毛毛发布了新的文献求助10
9秒前
三颗板牙完成签到,获得积分10
9秒前
replay完成签到,获得积分10
10秒前
YJY完成签到,获得积分10
10秒前
10秒前
德行天下完成签到,获得积分10
10秒前
ALinaLi完成签到,获得积分10
10秒前
侠医2012完成签到,获得积分0
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264588
捐赠科研通 3049861
什么是DOI,文献DOI怎么找? 1673719
邀请新用户注册赠送积分活动 802186
科研通“疑难数据库(出版商)”最低求助积分说明 760549