Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis

环境科学 森林退化 温带森林 遥感 森林砍伐(计算机科学) 亚马逊雨林 温带雨林 采样(信号处理) 减少毁林和森林退化造成的排放 温带气候 卫星图像 土地退化 地理 气候变化 计算机科学 土地利用 地质学 生态学 碳储量 生态系统 程序设计语言 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Shijuan Chen,Curtis E. Woodcock,Eric L. Bullock,Paulo Arévalo,Paata Torchinava,Siqi Peng,Pontus Olofsson
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:265: 112648-112648 被引量:155
标识
DOI:10.1016/j.rse.2021.112648
摘要

Current estimates of forest degradation are associated with large uncertainties. However, recent advancements in the availability of remote sensing data (e.g., the free data policies of the Landsat and Sentinel Programs) and cloud computing platforms (e.g., Google Earth Engine (GEE)) provide new opportunities for monitoring forest degradation. Several recent studies focus on monitoring forest degradation in the tropics, particularly the Amazon, but there are less studies of temperate forest degradation. Compared to the Amazon, temperate forests have more seasonality, which complicates satellite-based monitoring. Here, we present an approach, Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA), that combines time series analysis and spectral mixture analysis running on GEE for monitoring abrupt and gradual forest degradation in temperate regions. We used this approach to monitor forest degradation and deforestation from 1987 to 2019 in the country of Georgia. Reference conditions were observed at sample locations selected under stratified random sampling for area estimation and accuracy assessment. The overall accuracy of our map was 91%. The user's accuracy and producer's accuracy of the forest degradation class were 69% and 83%, respectively. The sampling-based area estimate with 95% confidence intervals of forest degradation was 3541 ± 556 km2 (11% of the forest area in 1987), which was significantly larger than the area estimate of deforestation, 158 ± 98 km2. Our approach successfully mapped forest degradation and estimated the area of forest degradation in Georgia with small uncertainty, which earlier studies failed to estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俭朴钢铁侠完成签到 ,获得积分10
1秒前
1秒前
2秒前
鹿过发布了新的文献求助10
3秒前
SepChopin完成签到,获得积分10
3秒前
炸毛可乐完成签到,获得积分10
3秒前
春田发布了新的文献求助10
3秒前
dongua发布了新的文献求助10
3秒前
3秒前
3秒前
Nemo发布了新的文献求助10
4秒前
sun完成签到,获得积分10
4秒前
4秒前
皛燚完成签到,获得积分10
4秒前
安心完成签到,获得积分10
5秒前
在水一方应助复杂蛋挞采纳,获得10
5秒前
香蕉觅云应助寻光人采纳,获得10
5秒前
莫1031完成签到 ,获得积分10
5秒前
5秒前
思源应助阿宅采纳,获得10
5秒前
CBC发布了新的文献求助10
5秒前
善学以致用应助swimming采纳,获得10
6秒前
Ashore完成签到,获得积分10
6秒前
6秒前
123完成签到,获得积分10
6秒前
爆米花应助13327558311采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
Dsivan发布了新的文献求助10
7秒前
8秒前
初心完成签到,获得积分10
8秒前
咕咕咕发布了新的文献求助10
9秒前
NanFeng发布了新的文献求助10
9秒前
小小学神发布了新的文献求助10
10秒前
小太阳完成签到,获得积分10
10秒前
春田完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511083
求助须知:如何正确求助?哪些是违规求助? 4605828
关于积分的说明 14495709
捐赠科研通 4540975
什么是DOI,文献DOI怎么找? 2488254
邀请新用户注册赠送积分活动 1470413
关于科研通互助平台的介绍 1442806