Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis

环境科学 森林退化 温带森林 遥感 森林砍伐(计算机科学) 亚马逊雨林 温带雨林 采样(信号处理) 减少毁林和森林退化造成的排放 温带气候 卫星图像 土地退化 地理 气候变化 计算机科学 土地利用 地质学 生态学 碳储量 生态系统 程序设计语言 海洋学 滤波器(信号处理) 生物 计算机视觉
作者
Shijuan Chen,Curtis E. Woodcock,Eric L. Bullock,Paulo Arévalo,Paata Torchinava,Siqi Peng,Pontus Olofsson
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:265: 112648-112648 被引量:91
标识
DOI:10.1016/j.rse.2021.112648
摘要

Current estimates of forest degradation are associated with large uncertainties. However, recent advancements in the availability of remote sensing data (e.g., the free data policies of the Landsat and Sentinel Programs) and cloud computing platforms (e.g., Google Earth Engine (GEE)) provide new opportunities for monitoring forest degradation. Several recent studies focus on monitoring forest degradation in the tropics, particularly the Amazon, but there are less studies of temperate forest degradation. Compared to the Amazon, temperate forests have more seasonality, which complicates satellite-based monitoring. Here, we present an approach, Continuous Change Detection and Classification - Spectral Mixture Analysis (CCDC-SMA), that combines time series analysis and spectral mixture analysis running on GEE for monitoring abrupt and gradual forest degradation in temperate regions. We used this approach to monitor forest degradation and deforestation from 1987 to 2019 in the country of Georgia. Reference conditions were observed at sample locations selected under stratified random sampling for area estimation and accuracy assessment. The overall accuracy of our map was 91%. The user's accuracy and producer's accuracy of the forest degradation class were 69% and 83%, respectively. The sampling-based area estimate with 95% confidence intervals of forest degradation was 3541 ± 556 km2 (11% of the forest area in 1987), which was significantly larger than the area estimate of deforestation, 158 ± 98 km2. Our approach successfully mapped forest degradation and estimated the area of forest degradation in Georgia with small uncertainty, which earlier studies failed to estimate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyiyi发布了新的文献求助10
1秒前
2秒前
箫音发布了新的文献求助10
3秒前
ccm应助milly采纳,获得10
3秒前
袁大头发布了新的文献求助10
4秒前
星辰大海应助洁洁3323采纳,获得10
4秒前
脸小呆呆发布了新的文献求助10
5秒前
ccm应助ABCDE采纳,获得10
5秒前
nienie完成签到,获得积分10
6秒前
充电宝应助sandyhaikeyi采纳,获得10
7秒前
椰子完成签到,获得积分10
8秒前
10秒前
10秒前
13秒前
幽默大有完成签到,获得积分10
13秒前
ccm应助六月采纳,获得10
14秒前
研友_VZG7GZ应助yuyiyi采纳,获得30
14秒前
CodeCraft应助徐志豪采纳,获得10
15秒前
学霸土豆发布了新的文献求助10
17秒前
17秒前
Yansz发布了新的文献求助10
19秒前
19秒前
21秒前
长情凝丹完成签到,获得积分10
23秒前
lfydhk发布了新的文献求助10
23秒前
23秒前
辞轲完成签到,获得积分10
24秒前
李爱国应助clhfio采纳,获得10
24秒前
27秒前
zhangyuze发布了新的文献求助10
28秒前
30秒前
z_z发布了新的文献求助10
31秒前
可爱的函函应助xl_c采纳,获得10
31秒前
33秒前
34秒前
好学的猪完成签到,获得积分10
35秒前
Owen应助顺利代曼采纳,获得10
35秒前
Kiki发布了新的文献求助30
36秒前
xht发布了新的文献求助10
39秒前
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4148348
求助须知:如何正确求助?哪些是违规求助? 3684844
关于积分的说明 11642469
捐赠科研通 3378644
什么是DOI,文献DOI怎么找? 1854168
邀请新用户注册赠送积分活动 916515
科研通“疑难数据库(出版商)”最低求助积分说明 830381