Deep learning-based plaque quantification from coronary computed tomography angiography: external validation and comparison with intravascular ultrasound

医学 血管内超声 组内相关 放射科 狭窄 冠状动脉疾病 计算机断层血管造影 管腔(解剖学) 血管造影 核医学 心脏病学 内科学 临床心理学 心理测量学
作者
Andrew Lin,Nipun Manral,Priscilla McElhinney,Aditya Killekar,Hidenari Matsumoto,Sebastien Cadet,Stephan Achenbach,Stephen J. Nicholls,Dennis Wong,Daniel S. Berman,Marc R. Dweck,David E. Newby,Michelle C. Williams,Piotr J. Slomka,Damini Dey
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:42 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehab724.0161
摘要

Abstract Background Atherosclerotic plaque quantification from coronary computed tomography angiography (CTA) enables accurate assessment of coronary artery disease burden, progression, and prognosis. However, quantitative plaque analysis is time-consuming and requires high expertise. We sought to develop and externally validate an artificial intelligence (AI)-based deep learning (DL) approach for CTA-derived measures of plaque volume and stenosis severity. We compared the performance of DL to expert readers and the gold standard of intravascular ultrasound (IVUS). Methods This was a multicenter study of patients undergoing coronary CTA at 11 sites, with software-based quantitative plaque measurements performed at a per-lesion level by expert readers. AI-based plaque analysis was performed by a DL novel convolutional neural network which automatically segmented the coronary artery wall, lumen, and plaque for the computation of plaque volume and stenosis severity. Using expert measurements as ground truth, the DL algorithm was trained on 887 patients (4,686 lesions). Thereafter, the algorithm was applied to an independent test set of 221 patients (1,234 lesions), which included an external validation cohort of 171 patients from the SCOT-HEART (Scottish Computed Tomography of the Heart) trial as well as 50 patients who underwent IVUS within one month of CTA. We report the performance of AI-based plaque analysis in the independent test set. Results Within the external validation cohort, there was excellent agreement between DL and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0.876), noncalcified plaque volume (ICC 0.869), and percent diameter stenosis (ICC 0.850; all p<0.001). When compared with IVUS, there was excellent agreement for DL total plaque volume (ICC 0.945), total plaque burden (ICC 0.853), minimal luminal area (ICC 0.864), and percent area stenosis (ICC 0.805; all p<0.001); with strong correlation between DL and IVUS for total plaque volume (r=0.915; p<0.001; Figure). The average DL plaque analysis time was 20 seconds per patient, compared with 25–30 minutes taken by experts. Conclusions AI-based plaque quantification from coronary CTA using an externally validated DL approach enables rapid measurements of plaque volume and stenosis severity in close agreement with expert readers and IVUS. Funding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Heart, Lung, and Blood Institute, United States

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助LeeFY采纳,获得10
刚刚
刚刚
zzy发布了新的文献求助10
刚刚
Orange应助科研小孟采纳,获得10
刚刚
十一发布了新的文献求助10
1秒前
1秒前
2秒前
不安若之发布了新的文献求助10
2秒前
rougelike完成签到,获得积分10
3秒前
阮煜城完成签到,获得积分10
3秒前
快乐源泉发布了新的文献求助10
4秒前
fanfan完成签到,获得积分10
4秒前
4秒前
jiabaoyu完成签到,获得积分10
5秒前
5秒前
阿健发布了新的文献求助10
5秒前
华仔应助活泼宛海采纳,获得10
6秒前
zhao完成签到,获得积分10
6秒前
阮煜城发布了新的文献求助10
6秒前
7秒前
WU发布了新的文献求助20
7秒前
jiabaoyu发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
hejingyan关注了科研通微信公众号
9秒前
9秒前
顾矜应助Cloud采纳,获得10
10秒前
11秒前
银杏叶发布了新的文献求助20
11秒前
英姑应助rarfen采纳,获得10
11秒前
科研通AI6.1应助能干水杯采纳,获得10
12秒前
小蘑菇应助RE采纳,获得10
12秒前
学习新思想完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
Awei发布了新的文献求助10
13秒前
lingmuhuahua发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519