Dense Prediction and Local Fusion of Superpixels: A Framework for Breast Anatomy Segmentation in Ultrasound Image With Scarce Data

人工智能 计算机科学 分割 模式识别(心理学) 图像分割 计算机视觉 卷积神经网络 深度学习
作者
Qinghua Huang,Zhaoji Miao,Shichong Zhou,Cai Chang,Xuelong Li
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-8 被引量:50
标识
DOI:10.1109/tim.2021.3088421
摘要

Segmentation of the breast ultrasound (BUS) image is an important step for subsequent assessment and diagnosis of breast lesions. Recently, Deep-learning-based methods have achieved satisfactory performance in many computer vision tasks, especially in medical image segmentation. Nevertheless, those methods always require a large number of pixel-wise labeled data that is expensive in medical practices. In this study, we propose a new segmentation method by dense prediction and local fusion of superpixels for breast anatomy with scarce labeled data. First, the proposed method generates superpixels from the BUS image enhanced by histogram equalization, a bilateral filter, and a pyramid mean shift filter. Second, using a convolutional neural network (CNN) and distance metric learning-based classifier, the superpixels are projected onto the embedding space and then classified by calculating the distance between superpixels' embeddings and the centers of categories. By using superpixels, we can generate a large number of training samples from each BUS image. Therefore, the problem of the scarcity of labeled data can be better solved. To avoid the misclassification of the superpixels, K-nearest neighbor (KNN) is used to reclassify the superpixels within every local region based on the spatial relationships among them. Fivefold cross-validation was taken and the experimental results show that our method outperforms several often used deep-learning methods under the condition of the absence of a large number of labeled data (48 BUS images for training and 12 BUS images for testing).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
段晶蕊发布了新的文献求助10
刚刚
安静雅阳完成签到,获得积分10
刚刚
尊敬寒松发布了新的文献求助10
1秒前
傲杰传说完成签到,获得积分10
1秒前
敏敏完成签到,获得积分10
1秒前
不做科研发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
幽默小丸子完成签到,获得积分10
4秒前
完美世界应助乐观寻绿采纳,获得10
4秒前
5秒前
ding应助时来运转采纳,获得30
5秒前
咎星完成签到,获得积分10
5秒前
随机昵称完成签到,获得积分10
5秒前
甜甜发布了新的文献求助10
6秒前
苏瑾发布了新的文献求助10
7秒前
ken131发布了新的文献求助10
7秒前
两味愚完成签到,获得积分10
7秒前
7秒前
随性完成签到,获得积分10
8秒前
8秒前
地体完成签到,获得积分10
8秒前
梦在远方完成签到 ,获得积分10
8秒前
李李完成签到,获得积分10
8秒前
鸭屎香菜完成签到,获得积分10
8秒前
天天快乐应助yuli采纳,获得10
9秒前
Angina吴发布了新的文献求助10
9秒前
壮观的人龙完成签到,获得积分10
10秒前
茕茕完成签到 ,获得积分10
10秒前
10秒前
大方小松发布了新的文献求助10
10秒前
包容新蕾完成签到 ,获得积分10
11秒前
刘66完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
搜集达人应助不做科研采纳,获得10
12秒前
xiao xu完成签到,获得积分10
12秒前
小蓝完成签到,获得积分10
12秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892755
求助须知:如何正确求助?哪些是违规求助? 3435603
关于积分的说明 10794247
捐赠科研通 3160803
什么是DOI,文献DOI怎么找? 1745632
邀请新用户注册赠送积分活动 842989
科研通“疑难数据库(出版商)”最低求助积分说明 786996