Characterizing the Survival-Associated Interactions Between Tumor-Infiltrating Lymphocytes and Tumors From Pathological Images and Multi-Omics Data

组学 病态的 肿瘤浸润淋巴细胞 计算生物学 基因组学 计算机科学 小RNA 生物 生物信息学 基因组 医学 病理 免疫疗法 癌症 基因 遗传学
作者
Wei Shao,Yingli Zuo,Yangyang Shi,Yawen Wu,Jiao Tang,Junyong Zhao,Liang Sun,Zixiao Lu,Jianpeng Sheng,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 3025-3035 被引量:10
标识
DOI:10.1109/tmi.2023.3274652
摘要

The tumor-infiltrating lymphocytes (TILs) and its correlation with tumors have shown significant values in the development of cancers. Many observations indicated that the combination of the whole-slide pathological images (WSIs) and genomic data can better characterize the immunological mechanisms of TILs. However, the existing image-genomic studies evaluated the TILs by the combination of pathological image and single-type of omics data (e.g., mRNA), which is difficulty in assessing the underlying molecular processes of TILs holistically. Additionally, it is still very challenging to characterize the intersections between TILs and tumor regions in WSIs and the high dimensional genomic data also brings difficulty for the integrative analysis with WSIs. Based on the above considerations, we proposed an end-to-end deep learning framework i.e., IMO-TILs that can integrate pathological image with multi-omics data (i.e., mRNA and miRNA) to analyze TILs and explore the survival-associated interactions between TILs and tumors. Specifically, we firstly apply the graph attention network to describe the spatial interactions between TILs and tumor regions in WSIs. As to genomic data, the Concrete AutoEncoder (i.e., CAE) is adopted to select survival-associated Eigengenes from the high-dimensional multi-omics data. Finally, the deep generalized canonical correlation analysis (DGCCA) accompanied with the attention layer is implemented to fuse the image and multi-omics data for prognosis prediction of human cancers. The experimental results on three cancer cohorts derived from the Cancer Genome Atlas (TCGA) indicated that our method can both achieve higher prognosis results and identify consistent imaging and multi-omics bio-markers correlated strongly with the prognosis of human cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杏仁与北极星的科研完成签到,获得积分10
1秒前
xingxinghan完成签到 ,获得积分10
1秒前
3秒前
3秒前
yu发布了新的文献求助10
3秒前
愉快的曼文完成签到,获得积分10
4秒前
wyq发布了新的文献求助10
4秒前
张达完成签到 ,获得积分10
5秒前
199898完成签到,获得积分10
5秒前
HEAUBOOK应助成就小懒虫采纳,获得10
6秒前
思源应助就是梦而已采纳,获得10
6秒前
chenchen完成签到,获得积分20
7秒前
7秒前
稳稳稳发布了新的文献求助10
7秒前
星睿发布了新的文献求助10
7秒前
8秒前
AhhHuang应助耐斯糖采纳,获得10
8秒前
JC完成签到 ,获得积分10
10秒前
11秒前
嘻嘻嘻完成签到,获得积分10
11秒前
水蓝丨剑月完成签到,获得积分10
12秒前
12秒前
穆小菜发布了新的文献求助10
13秒前
mltyyds完成签到,获得积分10
14秒前
14秒前
Jasper应助zmz采纳,获得10
15秒前
赘婿应助我是能跌采纳,获得10
16秒前
就是梦而已完成签到,获得积分10
16秒前
聪慧的怀绿完成签到,获得积分10
17秒前
月明发布了新的文献求助20
17秒前
18秒前
chenchen关注了科研通微信公众号
19秒前
21秒前
搜集达人应助zwb采纳,获得80
21秒前
科研通AI2S应助Gameven采纳,获得20
22秒前
现代怀蝶发布了新的文献求助10
22秒前
穆小菜完成签到,获得积分10
22秒前
23秒前
23秒前
Smole完成签到,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811218
求助须知:如何正确求助?哪些是违规求助? 3355594
关于积分的说明 10376790
捐赠科研通 3072455
什么是DOI,文献DOI怎么找? 1687496
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766728