亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Collision-Aware Cooperative Multi-UAV PathPlanning with Hierarchical PPO-LSTM

计算机科学 碰撞 人工智能 分布式计算 实时计算 计算机安全
作者
Alparslan Güzey
标识
DOI:10.21203/rs.3.rs-6490892/v1
摘要

Abstract Coordinating multiple unmanned aerial vehicles (UAVs) for inspection, delivery, and search-and-rescue missions demands routes that are globally efficient yet locally safe. Flat optimisation or single-level reinforcement-learning agents scale poorly as map size, obstacle density, or fleet size increase, because one policy must juggle long-horizon objectives and split-second collision avoidance. We reformu- late multi-UAV path planning as a hierarchical reinforcement-learning problem and introduce a two-tier controller for discrete grids under partial observability. A high-level manager selects coarse waypoints toward mission goals, while a shared recurrent worker—trained with proximal policy optimisation and an LSTM back- bone—executes short, collision-aware motion sequences. We prove that, given an expressive waypoint dictionary, every subgame-perfect equilibrium of the induced Markov game is collision-free and that enlarging the dictionary monotonically improves team return. To keep training practical we propose manager–worker curriculum optimisation: the worker is pre-trained on small grids and frozen, then the manager is trained on progressively larger maps. Experiments on three bench- marks—ranging from two to six UAVs with 20 %–40 % obstacle coverage—show that the hierarchy maintains ≥ 90 % mission success and reduces collisions by up to 74 % relative to plain PPO (62 % versus PPO + LSTM), while lengthening routes by no more than three primitive steps (≤ 2 compared with PPO + LSTM). Performance degrades only marginally as fleet size and obstacle density grow, confirming that a modest waypoint vocabulary combined with recurrent memory can turn simple reactive primitives into safe, scalable multi-UAV behaviour.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lr完成签到 ,获得积分10
1秒前
xiaom发布了新的文献求助10
2秒前
2秒前
6秒前
7秒前
天天快乐应助落寞易形采纳,获得10
8秒前
赵赵完成签到 ,获得积分10
11秒前
酷波er应助rita4616采纳,获得10
12秒前
ca发布了新的文献求助10
12秒前
Rn完成签到 ,获得积分0
12秒前
Hello应助科研通管家采纳,获得10
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
shhoing应助科研通管家采纳,获得10
14秒前
晓奕应助科研通管家采纳,获得10
14秒前
14秒前
852应助科研通管家采纳,获得10
14秒前
14秒前
shhoing应助科研通管家采纳,获得10
14秒前
16秒前
英姑应助积极的初南采纳,获得10
18秒前
落寞易形发布了新的文献求助10
21秒前
ca完成签到,获得积分20
22秒前
123321321345发布了新的文献求助10
29秒前
31秒前
34秒前
xiaomaxia完成签到 ,获得积分10
35秒前
皮皮关注了科研通微信公众号
38秒前
ceeray23发布了新的文献求助20
42秒前
钱都来发布了新的文献求助10
43秒前
huhdcid发布了新的文献求助30
46秒前
XWH完成签到,获得积分20
46秒前
47秒前
情怀应助羊念烟采纳,获得10
49秒前
50秒前
完美世界应助范小楠采纳,获得10
51秒前
皮皮发布了新的文献求助10
53秒前
小青椒应助DragonAca采纳,获得30
53秒前
我行我素发布了新的文献求助10
54秒前
喜悦的小土豆完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634535
捐赠科研通 4575773
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456366