Recent Advancements on Hyperspectral Image Reconstruction from a Compressive Measurement

高光谱成像 压缩传感 计算机科学 人工智能 计算机视觉 地质学 遥感
作者
Xian‐Hua Han,Jian Wang,Huiyan Jiang
标识
DOI:10.20944/preprints202504.1796.v1
摘要

Hyperspectral (HS) image reconstruction has emerged as a crucial research direction in computational imaging, enabling the retrieval of high-resolution spectral data from compressive snapshot measurements. With the rapid evolution of deep neural networks, HS image reconstruction technique has significantly advanced in both accuracy and efficiency, enabling more precise spectral recovery across many applications. This survey provides a comprehensive review of recent advances in HS image reconstruction strategies, being categorized into traditional model-based approaches, deep learning-based techniques, and hybrid pipelines that integrate data-driven learned prior knowledge with the mathematical formulation of the compressive degradation process. We discuss the theoretical foundations, advantages, and limitations of all three different strategies, highlighting key developments such as sparsity-based reconstruction and low-rank modeling in the model-based methods, convolutional neural network to transformer architecture evolution in the learning-based approaches, and deep unfolding framework in the hybrid pipelines. In addition, we investigate benchmark datasets, evaluation metrics, and key challenges—including spectral distortion, computational efficiency, and generalizability across diverse scenarios—along with potential future trends aimed at addressing these limitations. This survey aims to serve as a valuable resource for researchers and practitioners seeking to advance the state of the art in HS image reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研通管家采纳,获得30
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
哭泣灯泡应助科研通管家采纳,获得20
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
刚刚
皮肤科应助科研通管家采纳,获得20
刚刚
1秒前
李健应助科研通管家采纳,获得10
1秒前
MMMANGO应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
abcdefg发布了新的文献求助10
3秒前
CodeCraft应助Galaxee采纳,获得10
12秒前
标致的幼菱完成签到,获得积分10
14秒前
15秒前
16秒前
yutang完成签到 ,获得积分10
20秒前
22秒前
呆萌的秋白完成签到,获得积分10
24秒前
oceanL完成签到,获得积分10
24秒前
不倦应助HiNDT采纳,获得10
28秒前
Galaxee发布了新的文献求助10
29秒前
29秒前
长岁完成签到 ,获得积分10
29秒前
科研通AI5应助葛鲁采纳,获得10
33秒前
39秒前
40秒前
42秒前
抱抱发布了新的文献求助10
42秒前
仁爱慕山完成签到,获得积分10
42秒前
葛鲁发布了新的文献求助10
46秒前
jssssssss发布了新的文献求助10
48秒前
paper完成签到 ,获得积分10
49秒前
zxy完成签到,获得积分10
51秒前
汉堡包应助zxy采纳,获得10
57秒前
积极的中蓝完成签到 ,获得积分10
1分钟前
科研通AI5应助域名采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777121
求助须知:如何正确求助?哪些是违规求助? 3322541
关于积分的说明 10210567
捐赠科研通 3037872
什么是DOI,文献DOI怎么找? 1666940
邀请新用户注册赠送积分活动 797860
科研通“疑难数据库(出版商)”最低求助积分说明 758059